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Abstract

The objective of this work is to study the effect of the backpack on the components of the
Keywords spine system of a child, know the effect of an eccentric load on the intervertebral discs, the
) creating a 3D model of the spine of child of 80 kg overall weight under the effect of three
child, _ eccentric load (P2, P3, P4) plus P1 compression load and calculated by the element method
herniated discs; ends, For the boundary conditions we fixed the sacrum (Embedding the sacrum). We
Lumbar-Thoracic; propose in this section to draw up a comprehensive study of the distributions of stresses and
Intervertebral Discs; normal elastic strain of Von Mises in the intervertebral discs based on loads supported. The
Finite Element; results show that the stress and strain of Von Mises are highest and concentrated in four
Biomechanics; intervertebral discs (D1, D15, D16 and D17), which causes a problem that calls (herniated
Von Mises Stress- disc). We concluded that the cause of the posterior load, a 350 mm lever arm with a 200N
Strain; _ load present maximum Von Mises stresses concentrated in four intervertebral discs (D1,
Disc Degeneration. D15, D16, D17), which justifies the distance between the load which is the point of
application of the load and the axis of the spine plays a very important role in increasing the

solicitation of the latter.

1. Introduction

The spine or rachis consists of a movable column of 24 and shocks. Each consisting of a peripheral annulus
free vertebrae and a fixed column formed of fused  (annulus) containing a gelatinous core (nucleus). Disc
vertebrae: the sacrum and coccyx \" (Fig. 2) \" jitisthe  degeneration begins, after a phase of asymptomatic
fixing strut of many essential musclesin the posture and  dehydration, with tears in the fibrous ring. The core can
locomotion and protects the spinal cord located in the  then
vertebral canal ; it supports the head and transmits the
weight of the body to the hip joints;, with a length of  migrate into the thickness of the ring and cause acute or
about 70 cm in men (60 cm in women), its reduction  chronic back pain. If it moves further through the ring,
may reach 2 cm when standing [1]. the ring may protrude to the rear side of the disc while
forming a HERNIATED DISC this is indicated in
Intervertebral discs connect the vertebral bodies, provide  \" (Fig. 1) \" and \" (Fig. 2) \". This hernia can migrate
the mobility of the column and amortize them pressure into the spinal canal and even exclur leaving the disc.
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This disc herniation can come compress or "stuck™ in
one or more nerve roots located near the drive. It isthe
cause of symptoms: pain is sciatica when the back of

annulus -

the thigh, cruragie when the pain is in front of the
thigh [2] see Figure 1 and figure 2.

Fig 1. Normal disc (top). Herniated disc (bottom) shows the gel-filled nucleus escapes through a tear in the disc

annulus and compresses the spinal nerve [3].

It is the cause of symptoms when sciatic pain is in
back of the thigh, crural when pain isin front of the
thigh. It comprises variably pain in the lower limbs,
defourmillements or tingling sensation (paraesthesia),
the sensitivity to disturbance of sensation (dysesthesia)

up to a complete loss of feeling (anesthesia), loss
muscle strength or partial or complete paralysis or
sphincter disorders. continuously exerted, the pressure
of the herniated disc can cause irreversible damage

[2].
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| nerve
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Fig. 2 Evolutionary forms of the herniated disc. (a) back pain. (b) - crack the annulus, (c) -progression the disc

materia, (d) — prolapse [4]. & www.espalda.org

Every year it is the same finding, schoolchildren
satchels or bags to back are too heavy and can cause
long-term back problems and deformities of the spine
that is to say students complain of back pain, shoulder
pain, muscle pain, knee pain, pain in the neck,
numbness pain, bad posture, poor balance and falls
due at the port of a backpack overloaded view \" (Fig.
3)\" [5].
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Fig 3. A school child wearsa
backpack.

Worse, their weight increases over the years from 6.5 kg in

1997 to 8 kg today in the best case. This would amount
to carry to an adult of 80 kg weight 17 kg Yet the
official circular of 2008 National Education clearly
advocates that the weight of the backpack should not
exceed 10% of the weight of the child, ie, primary,
about 2.5 kg ... were off!! It is between 8 and 15 years
back is the most fragile, and scientific studies have
demonstrated imaging (MRI), the risk of joint damage
and intervertebral disc arereal [5].

Y et the officia circular of 2008 National Education clearly

advocates that the weight of the backpack should not
exceed 10% of the weight of the child, either primary,
about 2.5 kg ... we're off!! It is between 8 and 15 years
back is the most fragile, and scientific studies have
demonstrated imaging (MRI), the risk of joint damage
and intervertebral disc arereal [5].

During this period of school age, the spine of
children is particularly rough ride. With their school
bags too heavy, students are rea porter, causing
stiffness and pain, which are themselves a source of
bad posture on often inadequate seating.

It isin this context daily, as well as family education,
the accumulation, repetition of these situations will
cause joint damage, common causes such as
scoliosis. This explains the fact that 67% of students
suffer from muscle tension, 50% of back pain, 24%
falling asleep during classes and 15% of pain in the
shoulders [5]. The schoolbag defined as an eccentric
load \" (Fig. 3) \", the load represented by the mass
(P4), in other words, this load created a moment of
posterior bending which tends to bend the spine and
causes a problem called lumbar disc herniation is the
most common cause of low back pain.

[420

Fig 4. Model biomechanics of the spine (A
school child wears a backpack).
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The diagram \" (Fig. 4) \" represents a child to age 10
years of overal specific weight 38 kg to wear a
backpack, backpack is the mass of 15 kg representing
the weight PA4.

The MRI study [6], alerts of this overweight effect in the
development of degenerative disc disease, back pain and
then herniated disc\ » (Fig. 5) \".

In this work, the simulation of the disc degeneration,
based on a finite element model of the spine depending
on the mechanica properties were established ; the
boundary condition has been applied in the frontal plane
to define restriction on movements of transation and
rotation of the spine.

We propose in this work to draw up a comprehensive
study of stresses and strains in the spinal discs
distributions based on supported loads. The results
show that the level of degeneration increased in all

intervertebral discs but concentrated in the four disks
D1, D15, D16 and D17.

Fig. 5 shows two vertebrae of the spinal column with
an intervertebral disc under the effect of a compound
loading (compression P1 + bending moment P4). The
compressive load P1 creates an internal pressure in
the nucleus, this pressure will there after generate the
disc degeneration or degenerative disc disease \" (Fig.
5\* and \" (Fig. 7)\", as regards the forward flexion
P4, if the load of the schoolbag increases,
automatically distance between the point of load
application and the axis of the spina column
increases, we see that the posterior portion of the
annulus fibrosis is compressed and the other front
portion is tensioned, that is to say the nucleus
pulposus burst back (posterior compression), this
compression produced by disc protrusion comes into
contact with a nerve root called herniated disc this
mentioned in\" (Fig. 2)\".

P1
Annulus fibrosus Compression
; fd *.. EE
|

Nucleus pulposus

-+—— TENERILE STRESS
—s CCMPRESSIVE STRESS

Fig. 5 Theintervertebral disc with (a): compression [7].
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Fig. 6 Load distribution at the disc D1 according to his state [8].
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TEHSILE

A INSTANTANLIUE AX15 OF ROTATION

B INSTANTANEOUS AXIE OF ROTATION

COMPRESEIVE
STRESE

Fig. 7 Theintervertebral disc with (b): bending [7].

2. Materialsand M ethods

the objective of this study was to investigate the effects
induced by an eccentric load of the backpack on the back
of a child, know the effect of an eccentric load on the
intervertebral discs, cortical bone, cancellous bone,
posterior bone, sacrum, basin, created a 3D model of
spine, the total mass of person standing of specific global
80kg under the effect of three eccentric loads (p2, p3, p4)
plus a p1 compression load and caculated by the finit
element method, the boundary conditions we fixed the
sacrum (incorporation of the sacrum) see\" (Fig. 4) \".

The analysis of biomechanical problems includes several

steps.

Thefirst isto study the form to define the geometrical
configuration of the object, which allows the
reconstitution of the vertebra, the ligament and bone
using CAD programs.

The result is a 3D geometric model including these
three components will then be prepared for use in
finite element anayzes for the study of stresses and
strains distribution in the system.

The steps for the execution of the 3D vertebra model
\" (Fig. 8) \" areasfollow:

a) Draw cortical bone that is the upper hinge and the
lower hinge, then make the smoothing process; this
gives asolid body called the vertebral body.

b) Secondly, draw the posterior arch (blade with the
pedicle) with the spinous process.

¢) Finally we draw the transverse process.

Fig. 8 Lumbar vertebras.
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The simulation of the disc degeneration is based on a
finite element model of the heathy spine. Fig. 9
shows a spine model, this consists of five lumbar
vertebrae (L1, L2, L3, L4 and L5) plus the sacrum and
the basin, twelve thoracic vertebrae (TH1, TH2, TH3,
TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11,
TH12) and 17 inter vertebral discs between (S1-L5,
L5-L4, L4-L3, L3-L2, L2-L1, L1-TH12 TH12-TH11,
TH11, TH10, TH10-TH9, TH9-TH8, TH8-TH7, TH7-

TH6, TH6-TH5, TH5-TH4, TH3-TH4, TH3-TH2
TH2-TH1) and various ligaments thoracic lumbar
spine (anterior longitudina ligament, posterior
longitudina ligament, ligament interspinous, ligament
supraspinatus, yellow ligament and capsular
ligament), ligaments of the basin (sacroiliac posterior
ligament, sacrotuberous ligament and interosseous
ligament).

T2cm

Fig. 9 Spine studied.

(a): Lateral (left) view. (b): dorsal view. (c): front view. (d): lateral (right) view

In static loading conditions, the model of the
reconstructed spine is used in an analysis for
studying the role of the inter vertebral discs and
the stress distribution in these disks as well as its

supporting structures. The spine is reconstructed
in 3D to study the system dimensions (IVD -
ligament-bone) \" (Fig. 10)\".

35mm

«— 150mm _,:

Fig. 10 Vertebra and sacrum dimensions.
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In order to define the boundary conditions, restriction on
movements of trandation and rotation of the spine has
been applied in the lower plane, and defined as having
zero displacements. Severa charges in the anterior
direction were applied as follows:

The application of the load on the upper side of
the thoracic vertebra TH1.

The fixed part applied to the body of the basin.

The interfaces between the different components

Fig. 9 shows an isometric view of an explored
assembly of the spine and each component of the
spine system is denoted by letters.

Abbreviations

: intervertebral disk upstairs four.

: nucleus in the intervertebral disc upstairs four.
: intervertebral disk upstairs two.

: nucleusin the intervertebral disc upstairs two.
. lumbar vertebraison level two.

of the system of the spine, the cortical bone, the inter ~ Da: intervertebral disk upstairs four.
vertebral disk and ligament are treated as perfectly N4: nucleusin theintervertebral disc upstairs four.

bonded interfaces\" (Fig. 10)\". AF1: annulus fibrosus one.
AF2: annulus fibrosus two.

‘:T;I Cancellous Bone Endplate L,

AF:
Ak,
Al
r,
Ak

A

N, : Nucleus Pulposus 3

’kr;,»

o —

Cortical Bone
Posterior Bone
Dy : Annulus fibrosus D4+ Ny

Fig. 11 3D modeling thoracic vertebra L3, D4 disc of the lumbar spine (SOLI DWORK S 2016 softwar €).

Sacrum Ligament interosseouse

Basin

Ligament sacrotuberous

Fig 12. Model details of basin and sacrum (ligaments).

Table 1. Mechanical characteristics of disc tissue [9].

Authors o (MPa)
BROWN (axia direction) 14
GALANTE (horizontal direction) 35+03
GALANTE (fiber direction) 10.7+0.9
Wu 37
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The selection of congtitutive equations of the vertebral
bone is defined as the part of the bone which carries
the inter vertebral disc, composed of cortical bone,
cancellous bone, the posterior arch, with a Young's
modulus of about 12000 MPa. It is well known that
cortical bone has better load capacity than the

Table 2. Material Properties Specified in the Model.

cancellous bone. Cortical bone is considered as an
isotropic material, and homogeneous linear €elastic.
Table 1 shows the tensile strength of the structure
annulus fibrosis according to different authors. These
materials are anisotropic and non-linear elastic.

Young Poisson
Material modulus | coefficien REFERENCES
(MPa) t
Cortical Bone 12000 03 [11,13,14,15,16,17,18,19,20,21,22,27,36]
Cancellous Bone 100 0.2 [11,14,15,17,18,19,21,22,24,25,26,27,36]
Posterior Bone 3500 0.25 [13,14,15,18,19,21,22,24,27,28,37]
Cartilage Endplates 12000 0.3 [21,23,25,29]
Annulus Ground Substance 42 0.45 [11,14,17,19,20,21,22,23,25,33,31,32,35,36,37
: . ]
Nucleus Pulposus 1 0499 | [12,14,15,16,18,20,21,27,30,33,34,35,36,37]
Anterior Longitudina
Ligament 20 0.3 [14,15,17,18,19,37]
Posterior Longitudinal
Ligament 20 0.3 [14,15,17,18,37]
Ligamentum Flavum 19.50 0.3 [14,15,17,18,37]
Intertransverse Ligament 58.7 03 [14,15,17,18,37]
Inter-Spinous Ligament 11.6 0.3 [14,15,17,18,37]
Supra-Spinous Ligament 15 0.3 [14,15,17,18,37]
Capsular Ligament 329 0.3 [14,15,17,18,37]
Thebasin [38]
Sacrotuberous Ligament 40 0.3 [38]
Sacroiliac posterior
> P 40 03 [38]
Igament

Interosseouse Ligament 40 0.3 [38]
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The behavior of inter-transverse ligament and inter-
spinous ligament is nonlinear viscoelastic as in previous
studies [10]; alinear elastic model is chosen to represent
this behavior.

ANSYS WORKBENCH software was used for analyzing
this geometry and generate the most suitable mesh. For
the studied behavior, we used tetrahedral €lements, type
Solid187 conforming to defined parametric surfaces
interfaces\" (Fig. 13) \".

It is necessary to mesh the components of the spine with
smal and confused elements to ensure optimum
accuracy of the results of stresses and strains in the inter
vertebral discs.

The material properties of the spine components were
selected after a careful review of the published literature
“Table 27; it was considered appropriate to define the
cortical and cancellous bone as homogeneous and
isotropic. The magnitudes of 12000 MPa and 100 MPa
(cortical and cancellous, respectively) were observed in
al studies by various researchers.

Since physiologically the nucleus is fluid filled, the
elements were assigned low stiffness values (1M Pa)
and near incompressibility properties (Poisson’s ratio
of 0.499). Biologicaly, the annulus fibrosus is

comprised of layers of collagen fibers, which
atributes to its non-homogenous characteristics.
However, due to limitations in modeling abilities, the
annulus was defined as a homogenous structure with a
magnitude of 4.2 MPa.

This was based on the modulus of the ground
substance (4.2 MPa) and the collagen fibers reported
in the literature, taking into account the volume
fraction of each component. The complete model of
the spine \"(Fig. 13)\" was redized by the
SOLIDWORKS SOFTWARE VERSON 2014 and was
then transferred to the software Calculates each
element ends ANSYS 16.2 WORKBENCHE generated
the default mesh then generated linear global custom
mesh tetrahedra 10 nodes conform to surface.

The three views of spine model with condensed mesh
are shown in \"(Fig. 13)\". All element and node
numbers are specified in “Table 3”.

Fig. 13 shows a complete model that consists of
1178694 elements and 2005025 nodes. Cortical bone
contains (644683 elements and 961810 nodes),
cancellous bone contains (164441 elements 244460
nodes).

Table 3. Element and node numbers in the column vertebral system components.

COMPONENT NODES ELEMENTS Thickness
Cortical Bone 961810 644683 3mm
Cancellous Bone 244460 164441 3mm
Posterior Bone 226389 132464 3mm
Cartilage endplates 160055 87710 3mm
Annulus Ground Substance 244300 114036 3mm
Nucleus Pulposus 42449 26112 3mm
Anterior Longitudinal
Ligamgm 45798 24467 3mm
Posterlor Longitudinal 14414 6607 3mm
Ligament
Ligamentum Flavum 30226 13447 3mm
Transverse Ligament 285328 131648 3mm
I nter-Spinous Ligament 28968 13158 3mm
Supr a-Spinous Ligament 17833 8279 3mm
Capsular ligament 51816 24072 3mm
Sacr otuber ous Ligament 20878 10128 3mm
Sacroiliac posterior Ligament 5876 3280 3mm
I nter osseouse Ligament 13756 8306 3mm
TOTAL 2005025 1178694 3mm
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Fig. 13 spine 3D finite element modeling (ANSY S 16.2 software).

The posterior arch was modeled with tetrahedral
elements to 10 nodes contains (132464 e ements,
226389 nodes), the nucleus pulposus in the annulus
fibrosus were modeled with tetrahedral type elements 10
nodes (26112 elements 42449 nodes), the annulus
fibrosus were modeled with elements of type
tetrahedral to 10 nodes (114036 elements, 244800
nodes).

The gelatinous cartilage modeled with a tetrahedra
element to 10 nodes (87710 elements, 160055 nodes).
Finally, the different types of ligaments generated by a
tetrahedral mesh to 10 nodes “Table 3”.

Thediagramin\ " (Fig. 4) \" shows a person standing of
specific global 80kg weight, the overall mass (Head,
Neck, Arm (left + right), Forearm (left + right), hand
(left + right)) is 13,4517kg to divided by the top surface
of the thoracic vertebrae Thl representing the pressure
P1, P2 load represents the mass of the body superior
Trunk is 12,768kg, the distance between the point of
application of the load and axis (yy ') is 200 mm\ " (Fig.
14)\".

The total mass of the lower trunk of the human body
is equal to 22 kg; represented by P3, the distance
between the point of application of the load and the
axis(yy ") is250 mm\ " (Fig. 14) \" P4 representsthe
maximum mass of the backpack is (20 kg), the
distance between the point of load application and
the axis (yy ) of the spine is (350 mm) \ " (Fig. 14)
\".

For the boundary conditions we fixed the sacrum
(Embedding the sacrum) \" (Fig. 14) \".

We propose in this section to draw up a
comprehensive study of the distributions of stresses
and elastic strain in the intervertebra discs, the
cortical bone, cancellous bone, the posterior arch,
anterior longitudinal ligament and posterior
according to the supported loads. Distributions of
global stress state for each component of our model
were presented.

A quantitative analysis was performed based on a
scale of progressive visual colors predefined by the
software used (ANSYS Workbench 16.5), ranging
from dark blue to red.
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0.00

. Fixed support

125,00

. Pressure : P1 = -0,3014M Pa. . Distant load : P2 = -127,68N. . Distant load : P2 = -220N. . Distant load : P2 = -200N.

250.00 500,00 (mm)

375,00

Fig 14. Model biomechanics of the spine (posterior loading).

3. Results

Fig (15) shows a histogram of stress and maximum
strain of Von Mises, we notice that the spine undergoes
a concentration of maximum stresses in the thoracic
region, in the order word the stresses in the thoracic
vertebrae (Th3, Thd, Th5, Th6, Th7) are respectively
equal to (995,68MPa, 754.61 MPa, 467.09 MPa, 483.08
MPa, 369.65 MPa) as mentioned in\ " (Fig. 17) \".

Fig 16 shows a load applied to the upper surface of the
thoracic vertebra TH1 of the spinal column causes a
high concentration of maximum Von Mises strains in
the anterior part of vertebral bodies (red section) thisis
mentioned in\" (Fig. 17) \".

On the other hand, Fig 17 shows that the posterior
arch of the thoracic vertebrae (Th3, Th4, Th5, Theé,
Th7) absorbed the maximum von Mises stresses,

these stresses were observed on a posterior side of
the spine (red contour) with respect to other
components of the system of the spine. Proceeding
from the fact that the Fig (17) and (16) that watches
the posterior load presents greater strains within two
thoracic vertebrae (Th3, Th4) which are equal to
(0.29194, 0.21867), which means that the so-called
vertebrae are the most stressed in the case of
posterior bending.

Fig (18) shows that the posterior loading presents
maximum stresses and strains concentrated in the
intervertebral disc D1 that is to say between the
sacrum and the lumbar vertebra L5, in the order word
the \ " (Fig. 19) \" clearly shows that the loading
posterior with a lever arm equa 350mm presents
maximum Von Mises stresses and strains
concentrated in the disc D1 and are respectively
equal to (6,9797MPa, 1,7347mm / mm).
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Fig 15. Histogram of stress and strain in the spine for aload of 20kg.
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Fig 16. Distributions of stresses and strains in the thoracic vertebrae (Th3, Th4) for aload of 20kg.
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Fig 17. Distributions of stresses and strains in the thoracic vertebrae aload of 20kg.
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We see in Fig (18) the intervertebral discs (D1, D15,
D16, D17) absorbed the maximum stresses that equal
(6,9797MPa, 4,4374MPa, 4,7858MPa, 2,7365MPa),
On the other hand the posterior loading presents of
maximum strains concentrated in the intervertebra
discs (D1, D15, D16, D17) which are respectively
equa to (1.7347, 1.0586, 1.1463, 0 66065) as
mentioned in\ " (Fig. 19) \". Figure (9) shows that the

mixed loading (P1 compression + bending moment
(P3)) has a contour of maximum red part stresses in
the disc D1 and we see in this figure the front part of
the disc D1 is pulled and another compressed part,
other hand figure (9) clearly shows that the backpack
is a repeated effort back into everyday life ultimately
cause disc problems, particularly at the lumbar region
(lumbar disc herniation).
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Fig 19. Distributions of stresses and strainsin the DIV for aload of 20kg.
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Fig 20. Distributions of stresses and strains in the intervertebral disc D1 for aload of 20kg.

54



Int. J. Adv. Multidiscip. Res. (2016). 3(10): 41-61

Fig (20) shows that the mixed loading (P1
compression + bending moment (P3)) has a contour of
maximum stresses red part in the disc D1 and we see
in this figure the front part of the disc D1 is pulled and
another compressed part, other hand \ " (Fig. 20) \"
clearly shows that the backpack is a repested effort to
back into everyday life ultimately cause disc
problems, particularly at the lumbar region (lumbar
disc herniation).

We see in Fig 21 that the backpack it's a very
dangerous loading and with time creates pain in the
1st, 2nd intervertebral disc and causes sciatica or

cruralgia, regarding the spinal nerve compressed by
the two disks (D1, D2) and the pressure causes intense
pain radiating throughout the leg, the path of pain
follows closely the path of the nerve. In extreme cases,
thisresultsin partial or complete paralysis of the leg.

A load applied to the upper surface of the thoracic
vertebra TH1 of the spinal column causes a high
concentration of normal maximum von Mises stresses
in the anterior and posterior part of the cortical bone
(S1, Th12, Th5, Thl) (parts by red) thisisindicated in
\"(Fig. 22) \".

Her niated excluded 1.5mm

(L5-L4)

Hernia

Spinal cord

HD (S1:L5)
L5

(d)

Fig 21. Images of agirl 17 years old suffering back pain so severe, she was unable to walk. TDM spine lumbosacral
axial section (a, b) and sagittal reconstruction (c) showing a double HD L4-L5 and L5-S1 (d) Standard radiography
spine profile lumbosacral showing a pinch last intervertebral disc L5-S1
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._“.. :
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3 o
Her nia exelided'worm

herniated disc
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(S1-L5)

Fig 22. MRI of the lumbar sacral spine of a 16-year-old boy showing: (a) MRI weighted sagittal sequence T1, T2, (b)
weighted axia T2, (c) showing a herniated disc L5-S1 posterolateral |eft side and migrated down.

[ L g I
0, - f ! o ( !
: ‘ 10 ‘ L
=
£ s
E 300 -
Z
E 00 e
E 200
=
£
E ==
- N
el - 100 I o -
§l L5 L4 [3 1 LI TOLTHITOND THD TIE TO7 TH§ TOf TI4 TID TIZ T A 13 B 1 1L LT SHITHINYROTHY RRE THT THo THS. Thd- THS TH2 THI
Clorlical Bone. Cortical Bone.

Fig 23. Histogram of stresses and deformations in the cortical bone for load of 20kg.
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On the other hand, \ " (Fig. 22) \" shows that the
maximum von Mises stresses in the cortical bone (S1,
Th1l2, Th5, Thl) are equa to (40,069MPa, 140.15
MPa 223.82 MPa 496, 69 MPa) as compared to other
components of the system of the spine see\ " (Fig. 24)
\".

A loading of the posterior backpack applied on the
upper surface of the thoracic vertebra TH1 of the
spina column causes a high concentration of
maximum normal strains in the anterior part of the
thoracic vertebra Th (red part) this is mentioned in \
“(Fig. 23) \", with regard to the said vertebra
supported Von strain value set which are equa to

(0,041791mm / mm) relative to the other components
of the system of the spine.

Fig (25) shows a histogram of the stresses and strains
Von put supported by the cancellous bone and it is
noted that the maximum stress is concentrated in the
cancellous bone of the thoracic vertebra Thl as shown
in\"(Fig. 26) \".

The posterior load \ " (Fig. 3) \" shows clearly that the
stresses and strains of Von Mises are concentrated in
the two cancellous bone (Thl, Th5) and are
respectively equal to (4.6282Mpa, 5.7386MPa) and
(0.049594, 0.057685) thisis mentioned in the (Fig 26)
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Fig 24. Distributions of stresses and strainsin the cortical bone for load of 20kg.
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Fig 26. Distributions of stresses and strains in the cancellous bone with aload of 20kg.
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Fig 27. Histogram of stresses and strains in the posterior arch for aload of 20kg.
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Fig 28. Distributions of stresses and strains in the posterior arch for aload of 20kg
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The posterior loading of the backpack with a 350mm
lever shown that increased stresses and strains of VVon
Mises illustrated in the face of upper and lower
articulation of the posterior arch of the thoracic
vertebrae (Th3, Th4, Th5 , Th6, Th7) (red outline) \
"(Fig. 27) \", on the other hand \ " (Fig. 28) \" shows
clearly legend stress and strain of Von Mises put in the
thoracic region (Th3, Th4, Th5, Th6, Th7) are
respectively equal to ( 99568MPa, 754,61MPa,
467,09MPa, 483,08MPa, 369,656MPa) and (0.29194,

0.21719, 0.16183, 0.21867, 0.21867) compared to
other components of the system spine. We see in
Figure 18 the role of the basin to transmit the load to
the lower part of the human body and absorbation
stresses and strain VVon bets (red outling), we note that
the two bodies (basin, sacrum) supported stresses and
normal elastic deformations which are equal to
(46,069MPa, 28,201MPa) and (0.012947, 0.0187)
relative to the other components of the system of the

spine.
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Fig 18. Distributions of stresses and strains in the basin and sacrum for aload of 20kg.

4. Discussion

In sum, we concluded that the posterior loading is
certainly an aggravating factor, and may cause long
term back problems and strains of the spine, the 3D
model of the spine of a child under the effect of an
eccentric load and calculate by the FEM provokes
stress and strains maximum of Von Mises
concentrated in the intervertebral disc (D1) and are
equal to (6,9797MPa, 1,7347mm/ mm) as hoted in the
\ " (Fig. 18) \", with regard to \ " (Fig. 19, 20, 21) \"
show that the intervertebral disc (D1) is the most
damaged which is disc degeneration often occurs after
a phase asymptomatic dehydration cracks, tearing of
annulus fibrosus (D1 ), the nucleus (N1) can then
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along these cracks migrate into the ring thickness
(D1), and cause acute or chronic back pain, If the core
(N1) move around more through the ring (D1), the
core can project to the posterior surface of the disc
while forming alumbar disc herniation, this hernia can
complete rupture of the ring, migrate laterally into the
vertebral canal, or up or down, and even exclude
leaving the disk, herniated disc that can come be
compressed one or more nerve roots "stuck" near the
disc, causing the symptoms of pain "sciatica' when the
rear seat of the thigh or "cruragie" when the seat of
pain in the front of the thigh. This justifies that the
distance between the load which is the point of
application of the load and the axis of the spine plays
an important role in increasing stresses at the
intervertebral discs.
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5. Conclusion

In sum, we concluded the case of posterior loading
350mm lever arm with a load 200N posterior indicate
normal maximum Von Mises stresses in four
intervertebral discs (D1, D15, D16, D17) and are equa
to (6,9797MPa, 4,4374MPa, 4,7858MPa, 2,7365M Pa)
these mentioned in\ " (Fig. 18) \", on the other hand \
" (Fig. 19) \" clearly shows the elastic strain is higher
in the four intervertebral discs (D1, D15, D16, D17)
that are equal (1.7347, 1.0586, 1.1463, O 66065),
which justifies that the distance between the load
which is the point of application of the load and the
axis of the spine plays a very important role in
increasing the solitation of the latter.
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