
International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

78

International Journal of Advanced Multidisciplinary Research (IJAMR)
ISSN: 2393-8870
www.ijarm.com

Research Article
Cloud storage for Local Hardware and Software management

P.Vignesh*

Department of Computer Applications, Sri Venkateswara Engineering College, Kanchipuram, Tamilnadu, India
*Corresponding Author

Abstract

Cloud storage enables users to remotely store their data and enjoy the on-demand high quality cloud
applications without the burden of local hardware and software management. Though the benefits are
clear, such a service is also relinquishing users’ physical possession of their outsourced data, which
inevitably poses new security risks toward the correctness of the data in cloud. In order to address this
new problem and further achieve a secure and dependable cloud storage service,we could not recover
the data from the loss that’s what in our proposed system introduce some more algorithm like
segmentation, encoding and encryption along with TPA auditing using all the above algorithm we can
achieve the data confident because we just increases the extraction time when the extraction time is
increase automatically the security level also increase.we propose a flexible distributed storage
integrity auditing mechanism. The proposed design allows users to audit the cloud storage with very
lightweight communication and computation cost. The auditing result not only ensures strong cloud
storage correctness guarantee, but also simultaneously achieves fast data error localization, i.e., the
identification of misbehaving server.

Introduction

cloud computing is the delivery of computing and storage
capacity as a service to a heterogeneous community of end-
recipients. The name comes from the use of a cloud-shaped
symbol as an abstraction for the complex infrastructure it
contains in system diagram. Cloud computing entrusts
services with a user's data, software and computation over a
network.

There are three types of cloud computing:
 Infrastructure as a Service (IaaS)
 Platform as a Service (PaaS)
 Software as a Service (SaaS)

Using Infrastructure as a Service, users rent use of servers
provided by one or more cloud providers. Using Platform as a
Service, users rent use of servers and the system software to
use in them. Using Software as a Service, users also rent
application software and databases. The cloud providers

manage the infrastructure and platforms on which the
applications run.

End users access cloud-based applications through a web
browser or a light-weight desktop or mobile app while the
business software and user's data are stored on servers at a
remote location. Proponents claim that cloud computing
allows enterprises to get their applications up and running
faster, with improved manageability and less maintenance, and
enables IT to more rapidly adjust resources to meet fluctuating
and unpredictable business demand.

Cloud Computing Security

The cloud infrastructures are much more powerful and reliable
than personal computing devices, broad range of both internal
and external threats for data integrity still exist. The users may
not retain a local copy of outsourced data; there exist various

Keywords

Cloud storage,
Of local hardware and
software management
TPA auditing,

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

79

incentives for CSP to behave unfaithfully toward the cloud
users regarding the status of their outsourced data. For
example, to increase the profit margin by reducing cost, it is
possible for CSP to discard rarely accessed data without
being detected in a timely fashion. Similarly, CSP may even
attempt to hide data loss incidents so as to maintain a
reputation. Therefore, although outsourcing data into the
cloud is economically attractive for the cost and complexity
of long-term large-scale data storage, its lacking of offering
strong assurance of data integrity and availability may
impede its wide adoption by both enterprise and individual
cloud users.In order to achieve the assurances of cloud data
integrity and availability and enforce the quality of cloud
storage service, efficient methods that enable on-demand
data correctness verification on behalf of cloud users.
Moving data into the cloud offers great convenience to users
since they don’t have to care about the complexities of
direct hardware management. The pioneer of cloud
computing vendors, Amazon Simple Storage Service (S3),
and Amazon Elastic Compute Cloud (EC2) are both well-
known examples. While these internet-based online services
do provide huge amounts of storage space and customizable
computing resources, this computing platform shift,
however, is eliminating the responsibility of local machines
for data maintenance at the same time. As a result, users are
at the mercy of their cloud service providers (CSP) for the
availability and integrity of their data.

OBJECTIVE:

The main objective users can remotely store their data and
enjoy the on-demand high-quality applications and services
from a shared pool of configurable computing resources,
without the burden of local data storage and maintenance
We motivate the public auditing system of data storage
security in cloud computing and provide a privacy-
preserving auditing protocol. Our scheme enables an
external auditor to audit user’s cloud data without learning
the data content. To the best of our knowledge, our scheme
is the first to support scalable and efficient privacy-
preserving public storage auditing in cloud. Specifically, our
scheme achieves batch auditing where multiple delegated
auditing tasks from different users can be performed
simultaneously by the TPA in a privacy-preserving manner.
We prove the security and justify the performance of our
proposed schemes through concrete experiments and
comparisons with the state of the art.

SYSTEM SPECIFICATIONS:

2.1 HARDWARE SPECIFICATION

Processor : Intel Pentium IV
Clock speed : 1.8 GHz
RAM : 256 MB
HDD : 80 GB

Pointing device : Scroll Mouse
Keyboard : 101 Standard Key-board
Peripherals : Printer
2.2 SOFTWARE SPECIFICATION

Core Language : Advanced Java (Servlet)
Operating System : Windows 7
Database : Mysql 5.5
Front End : JSP and Html
IDE : Spring Source
3.5
Application Engine : Amazon EC2

2.3 SOFTWARE DESCRIPTION:

ABOUT JAVA
Java is a computer programming language that
is concurrent, class-based, object-oriented, and specifically
designed to have as few implementation dependencies as
possible. It is intended to let application developers "write
once, run anywhere" (WORA), meaning that code that runs
on one platform does not need to be recompiled to run on
another. Java applications are
typically compiled to bytecode (class file) that can run on
any Java virtual machine (JVM) regardless of computer
architecture. Java is one of the most popular programming
languages in use, particularly for client-server web
applications, with a reported 9 million developers. Java was
originally developed by James Gosling at Sun
Microsystems(which has since merged into Oracle
Corporation) and released in 1995 as a core component of
Sun Microsystems' Java platform. The language derives
much of its syntax from C and C++, but it has fewer low-
level facilities than either of them.
The original and reference implementation Java compilers,
virtual machines, and class libraries were developed by Sun
from 1991 and first released in 1995. In compliance with the
specifications of the Java Community Process, Sun
relicensed most of its Java technologies under the GNU
General Public License. Others have also developed
alternative implementations of these Sun technologies, such
as the GNU Compiler for Java (bytecode compiler), GNU
Class path (standard libraries), and Iced Tea-Web (browser
plugin for applets). One characteristic of Java is portability,
which means that computer programs written in the Java
language must run similarly on any hardware/operating-
system platform. This is achieved by compiling the Java
language code to an intermediate representation called Java
bytecode, instead of directly to platform-specific machine
code. Java bytecode instructions are analogous to machine
code, but they are intended to be interpreted by a virtual
machine (VM) written specifically for the host
hardware. End-users commonly use a Java Runtime
Environment (JRE) installed on their own machine for
standalone Java applications, or in a Web browser for
Java applets. Standardized libraries provide a generic way to
access host-specific features such as graphics, threading,

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

80

and networking. A major benefit of using bytecode is
porting. However, the overhead of interpretation means that
interpreted programs almost always run more slowly than
programs compiled to native executables would. Just-in-
Time (JIT) compilers were introduced from an early stage
that compilebytecodes to machine code during runtime.
Java has been tested, refined, extended, and proven by a
dedicated community of Java developers, architects and
enthusiasts. Java is designed to enable development of
portable, high-performance applications for the widest range
of computing platforms possible. By making applications
available across heterogeneous environments, businesses
can provide more services and boost end-user productivity,
communication, and collaboration—and dramatically
reduce the cost of ownership of both enterprise and
consumer applications. Java has become invaluable to
developers by enabling them to:
 Write software on one platform and run it on
virtually any other platform.
 Create programs that can run within a web browser
and access available web services.
 Develop server-side applications for online forums,
stores, polls, HTML forms processing, and more.
 Combine applications or services using the Java
language to create highly customized applications or
services.
 Write powerful and efficient applications for
mobile phones, remote processors, microcontrollers,
wireless modules, sensors, gateways, consumer products,
and practically any other electronic device.

The JRE consists of the Java Virtual Machine (JVM), Java
platform core classes, and supporting Java platform
libraries. The JRE is the runtime portion of Java software.
The Java Plug-in software is a component of the Java
Runtime Environment (JRE). The JRE allows applets
written in the Java programming language to run inside
various browsers. The Java Plug-in software is not a
standalone program and cannot be installed separately.The
Java Virtual Machine is only one aspect of Java software
that is involved in web interaction. The Java Virtual
Machine is built right into your Java software download,
and helps run Java applications. Java can also be used to
develop time critical applications. Real Time Specification
for Java (RTSJ) defines and addresses the issues pertaining
to the support to be provided by Java for real time
environments. The priority based threading model in java
provides for real time capabilities.

SYSTEM ANALYSIS
3.1 EXISTING SYSTEM:

Even though cloud storage provide many benefit and
high level security but there may be a chances to loss data

from the server this will happen both internal attack i.e.
cloud owner and external attack i.e. cloud users if the
problem accrued in physical process the user cont able to
know about the attack because data are persisted in remote
machine to identify the misbehavior server this paper
introduce new technique called TPA auditing using this
service the user can easily know about the misbehavior
server because the TPA is not fully dependent cloud server
and user it just audit the file based on user requirements and
send auditing result to the requested user.
DISADVANTAGE
 The internal and external affects the data integrity
in cloud computing.
 The identification of misbehaving server is not
possible.
 The Error report of other verification technique
report is binary.
 The other system is not cost effective and it is large
scale data storage and it will not provide full guarantee to
the user’s data.
 The users can easily attack the data by dynamic
operations.

3.2 PROPOSED SYSTEM:

By using TPA Auditing the user can find the misbehavior
server but still the problem is exist i.e. we could not recover
the data from the loss that’s what in our proposed system
introduce some more algorithm link segmentation, encoding
and encryption along with TPA auditing using all the above
algorithm we can achieve the data confident because we just
increases the extraction time when the extraction time is
increase automatically the security level also increase.
ADVANTAGES
 It achieves the integration of storage correctness
and data error localization, i.e., the identification of
misbehaving server(s).
 It supports secure and efficient dynamic operations
on data blocks, including: update, delete, and append.
 It is highly efficient, lightweight communication
and computation cost.
 It is resilient again malicious data modification
attack, and even server colluding attacks.

 For achieving high security we proposed new
algorithm, like segmentation, encryption and encoding
through this techniques we can achieve the data confident in
cloud environment
FEASIBILITY STUDY
Preliminary investigation examine project feasibility, the
likelihood the system will be useful to the organization. The
main objective of the feasibility study is to test the
Technical, Operational and Economical feasibility for
adding new modules and debugging old running system. All
system is feasible if they are unlimited resources and
infinite time. There are aspects in the feasibility study
portion of the preliminary investigation:

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

81

 Technical Feasibility
 Operation Feasibility
 Economical Feasibility

Technical Feasibility

The technical issue usually raised during the feasibility
stage of the investigation includes the following:
 Does the necessary technology exist to do what is
suggested?
 Do the proposed equipments have the technical
capacity to hold the data required to use the new system?
 Will the proposed system provide adequate response to
inquiries, regardless of the number or location of users?
 Can the system be upgraded if developed?
 Are there technical guarantees of accuracy, reliability,
ease of access and data security?

Earlier no system existed to cater to the needs of ‘Secure
Infrastructure Implementation System’. The current system
developed is technically feasible. It is a browser based user
interface for audit workflow. Thus it provides an easy
access to the users. The database’s purpose is to create,
establish and maintain a workflow among various entities in
order to facilitate all concerned users in their various
capacities or roles. Permission to the users would be granted
based on the roles specified. Therefore, it provides the

technical guarantee of accuracy, reliability and security. The
software and hard requirements for the development of this
project are not many and are already available or are
available as free as open source. The work for the project is
done with the current equipment and existing software
technology. Necessary bandwidth exists for providing a fast
feedback to the users irrespective of the number of users
using the system.

Operational Feasibility

The analyst considers the extent the proposed system will
fulfill his departments. That is whether the proposed system
covers all aspects of the working system and whether it has
considerable improvements. We have found that the
proposed “Secure transaction” will certainly have
considerable improvements over the existing system.

3.3.3 Economic Feasibility

The proposed system is economically feasible because the
cost involved in purchasing the hardware and the software
are within approachable. Working in this system need not
required a highly qualified professional. The operating-
environment costs are marginal. The less time involved also
helped in its economical feasibility.

SYSTEM DESIGN
DETAILED SYSTEM DESIGN:

4.1.2 SYSTEM ARCHITECTURE

USER

TPA

CLOUD

AUDITING

D
Y
N
A
M
I
C

O
P
E
R
A
T
I
O
N

OUTSOURCED
DATA INFO

AUDITING
RESULT

D
A
T
A

SEGMENT/DE
SEGMENT

ENCODING/D
ECODING

ENCRYPT/DE
CRYPT

D
A
T
A

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

82

4.1.3 DATA FLOW DIAGRAM

Admin Original File Segmentation

Cloud Environment

Encoding

Decoding UserDe
segmentation

Original
file

Data Centers

File1 File3

TPA auditing

Auditing Report

file

Back up

Access
Reques
t

File2 File..n

Encryption

Decryption

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

83

4.1.4 SEQUENCE DIAGRAM

4.1.5 DATABASE DESIGN

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

84

4.2 MODULE DESCRIPTION:

MODULES

1. Authentication

2. Security Process

 Segmentation

 myEncoding

 Encryption

3. Data Access Operation

4. Outsourced Data information

5. Auditing

4.2.1 AUTHENTICATION

It is the act of confirming the truth of an
attribute of a datum or entity. This might involve
confirming the identity of a person or software
program, tracing the origins of an artifact, or
ensuring that a product is what it’s packaging and
labeling claims to be. Authentication often involves
verifying the validity of at least one form
of identification. User enters the cloud with the
registered username and password. It also provides
option for creating an account to use the cloud
storage. Once created the person can do the
dynamic operations with the newly created
account. The authentication can be obtained with
certain cloud service providers like Amazon EC2,
Windows Azure etc. It is approved with certain
credit card being provided to the service providers
for money transaction.

4.2.2 SECURITY PROCESS
The security process involves all the

mechanisms involved to protect the data from
being getting corrupted or being misused by a third
person. The data is subjected to three security
processes namely sementation/ desegmentation,
encoding/ decoding and encryption/ decryption.

SEGMENTATION:

User store files in cloud server. For
providing security, segment the file which is stored
in different location. Segmentation, file size is
splits up and save in different location. While
download the uploaded file, cloud server
desegment the file which was segmented.

ENCODING:

Base-64 algorithm is used for encoding.
By encoding more security is provided for the file
which is stored in cloud server. Base64 is a group
of similar binary-to-text encoding schemes that
represent binary data in an ASCII string format by
translating it into a radix-64 representation. The
Base64 term originates from a specific MIME
content transfer encoding.

Base64 encoding schemes are commonly
used when there is a need to encode binary data
that need to be stored and transferred over media
that are designed to deal with textual data. This is
to ensure that the data remain intact without
modification during transport. Base64 is commonly
used in a number of applications including
email via MIME, and storing complex data
in XML.

ENCRYPTION:

The algorithm is required to be royalty-
free for use worldwide and offer security of a
sufficient level to protect data. It was to be easy to
implement in hardware and software, as well as in
restricted environment and offer good defenses
against various attack techniques. The entire
selection process was fully open to public scrutiny
and comment, it being decided that full visibility
would ensure the best possible analysis of the
designs.

High-level description of the algorithm

1. KeyExpansion—round keys are derived from the
cipher key using Rijndael’s key schedule. AES
requires a separate 128-bit round key block for
each round plus one more.

2. InitialRound

1. AddRoundKey—each byte of the state is
combined with a block of the round key
using bitwise xor.

3. Rounds

1. SubBytes—a non-linear substitution step
where each byte is replaced with another
according to a lookup table.

2. ShiftRows—a transposition step where
each row of the state is shifted cyclically
a certain number of steps.

3. MixColumns—a mixing operation which
operates on the columns of the state,
combining the four bytes in each
column.

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

85

4. AddRoundKey

4. Final Round (no MixColumns)

1. SubBytes

2. ShiftRows

3. AddRoundKey

4.2.3 DATA ACCESS OPERATION

Dynamic operations like delete, download, append
and modifications of files done in cloud server based on
user access. The file can be added to the cloud for keeping it
safe in the cloud storage. The file added is stored by
adapting all the security processes defined. The file can be
downloaded from the cloud after proper authentication
being made. Any modifications made will be stored in the
cloud made by the user. If any unknown person enters the
cloud without proper authentication and misuses the file in
the cloud, it must be managed by the TPA and must be
alerted for the user to notice it. These operations are done to
communicate with the cloud and thus making all the transfer
of files or any information into the cloud for storing and
retrieving it in a safe way.

4.2.4 OUTSOURCED DATA INFORMATION

The metadata refers to data about data. It is
descriptive information about a particular data set, object, or
resource, including how it is formatted, and when and by
whom it was collected. Metadata summarizes basic
information about data, which can make finding and
working with particular instances of data easier. For
example, author, date created and date modified and file
size are examples of very basic document metadata. Having
the ability to filter through that metadata makes it much
easier for someone to locate a specific document. The
information provided in a document might have further
descriptions that explain the origin or context of the
information itself. Metadata (metacontent) are defined as
the data providing information about one or more aspects of
the data, such as:

1. Means of creation of the data
2. Purpose of the data
3. Time and date of creation
4. Creator or author of the data
5. Location on a computer network where the data

were created

4.2.5 AUDITING

Auditing is a systematic and independent examination of
data, statements, records, operations and of the data residing
on the cloud for a stated purpose. Auditing main purpose or

object is to find the opinion of an auditor about correctness
and reliability. Audits should always be an independent
evaluation that will include some degree of quantitative and
qualitative analysis. These standards assure third parties or
external users that they can rely upon the auditor's opinion.
In any auditing the auditor perceives and recognizes the data
for examination, collects evidence, evaluates the same and
on this basis formulates the judgment which is
communicated through the audit report. The TPA (Third
Party Auditor) is the one who audits the cloud system. The
TPA provides an audit report to the user for verifying the
users’ data whether had been misused or not by any third
person. The audit result will indicate an error if there is any
change in the data or any unauthorized access of the data
from the cloud.

IMPLEMENTATION

INPUT DESIGN:

The dynamic and open characteristics of the cloud
computing, continuing malicious attacks happen frequently.
Combining the idea of trusted cloud, a trust-based defensive
system model for cloud computing has been constructed to
guarantee the cloud security. Through real-timely
monitoring, users’ behavior evidences have been obtained
and standardized. It gradually determines the weights of
behavior evidences, achieves quantitative assessment of
behavioral trust to provide great security defense for users,
multiple detection engines have been used to conduct a
comprehensive inspection of suspicious files and integrated
decisions have been made.

The cloud system is a live drive as shown in figure where
the data is stored in the cloud through online with the help
of web browsers. They can be accessed from anywhere,
where there is internet access in the entire world. The cloud
storage is not made in the same place where the access is
done but can be stored anywhere around the world.

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

86

4.3.2 DATAOUTSOURCE:

Using a storage service to store file uploads provides an
order of magnitude, scalability, reliability, and speed gain
than just storing files on a local file system. The file to be
stored is to be chosen to upload in the cloud as shown in
figure . The file will be segmented and further security
processes are made, thus avoiding the unnecessary access of
the file from the cloud. The data will be stored in the cloud
but in different data centers that was created in the cloud for
security purpose. There are totally six data centers being
created for placing the data in different location after
performing segmentation. The cloud storage is not done in a
particular place or country but can be done in different
places. The data is not just stored in one place but are stored
in two different places. Hence when any disastrous occurs,
the data from one place get destroyed or eradicated the data
from other place will be used. Thus avoids data loss. The
data will not be retrieved by any unauthorized person since
certain security process are done.

4.3.3 DATA ACCESS OPERATIONS:

Data access operations like delete, download of
files done in cloud server based on user access as shown in
figure . The file can be added to the cloud for keeping it safe
in the cloud storage. The file added is stored by adapting all
the security processes defined. The file can be downloaded
from the cloud after proper authentication being made. Any
modifications made will be stored in the cloud made by the
user. If any unknown person enters the cloud without proper
authentication and misuses the file in the cloud , it must be
managed by the TPA and must be alerted for the user to
notice it. The data access operations are those involved or
invoked to make operations on the data uploaded or stored
in the cloud, also any new uploading of data can also be
done. These operations can be made use of by the
authorized persons. Thus proper authentication is interfaced
with it to have a proper data storage. Any improper entry
detected will be indicated in the auditing report.

4.3.4 OUTSOURCED DATA INFORMATION :

Outsourced is the information or data in cloud that is not
exactly the data itself but its data about the data. In a
broader way you can view metadata as an encyclopedia
of the data warehouse. Outsourced datainfo
in cloud contains information about the various data or
files used or stored in cloud as shown in figure . The
outsurced data information is provided by the TPA (Third
Party Auditor) and thus allows the user to verify the data or
files stored in the cloud based on the creation time ,
accessed time etc. The outsourced data information thus
generated is used for generating the auditing report. The
auditing report makes use of the data created and accessed
by the user. Thus any misuse of the file can be obtained
with the outsourced data information. The change in the size
of the file can also be used to indicate the errorness in the
data stored in the cloud. The data about the data in the cloud
is to be generated for security purposes. The security
provided will be analyzed only through the auditing report
which is generated with the use of outsourced data report.

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

87

SOURCE CODE:
DATAOUTSOURCE.Java

public class Fileupload extends HttpServlet {

private static final long serialVersionUID = 1L;

publicFileupload() {

super();

}

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException
{

doPost(request,response);

}

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

HttpSessionUserId=request.getSession();

ArrayList<Long> al=new ArrayList<Long>();

String userid=UserId.getAttribute("userid")!=null?UserId.getAttribute("userid").toString():" ";

if(userid.equals(" ")){

RequestDispatcher rd2= request.getRequestDispatcher("FileUpload.jsp");

request.setAttribute("msg", "You are not logged in");

rd2.forward(request, response);

}

else

{

int rem=0;

int size=0;

int File1=0;

int File2=0;

int File3=0;

int File4=0;

int File5=0;

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

88

String[]

storage={"DataCenter1","DataCenter2","DataCenter3","DataCenter4","DataCenter5","DataCenter6",};

String contentType = request.getContentType();

if(contentType != null &&contentType.indexOf("multipart/form-data") >= 0)

{

DataInputStream in = new DataInputStream(request.getInputStream());

intformDataLength = request.getContentLength();

bytedataBytes[] = new byte[formDataLength];

intbyteRead = 0;

for(inttotalBytesRead = 0; totalBytesRead<formDataLength; totalBytesRead

+= byteRead)

byteRead = in.read(dataBytes, totalBytesRead, formDataLength);

String file = new String(dataBytes);

String saveFile = file.substring(file.indexOf("filename=\"") + 10);

saveFile = saveFile.substring(0, saveFile.indexOf("\n"));

saveFile = saveFile.substring(saveFile.lastIndexOf("\\") + 1, saveFile.indexOf("\""));

out.println(saveFile);

intlastIndex = contentType.lastIndexOf("=");

String boundary = contentType.substring(lastIndex + 1, contentType.length());

intpos = file.indexOf("filename=\"");

pos = file.indexOf("\n", pos) + 1;

pos = file.indexOf("\n", pos) + 1;

pos = file.indexOf("\n", pos) + 1;

intboundaryLocation = file.indexOf(boundary, pos) - 4;

intstartPos = file.substring(0, pos).getBytes().length;

intendPos = file.substring(0, boundaryLocation).getBytes().length;

FileOutputStreamfileOut = new FileOutputStream(saveFile);

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

89

fileOut.write(dataBytes, startPos, endPos - startPos);

fileOut.flush();

fileOut.close();

Connection connection = null;

String connectionURL = "jdbc:mysql://localhost:3306/towards";

ResultSetrs = null;

PreparedStatementpsmnt = null;

String name = null;

try

{

int count = 0;

int count1 = 0;

Class.forName("com.mysql.jdbc.Driver").newInstance();

connection = DriverManager.getConnection(connectionURL, "mysql", "mysql");

Statement st = connection.createStatement();

File f = new File(saveFile);

psmnt = connection.prepareStatement("insert into fileupload(no,path,username,image) values(?,?,?,?)");

FileInputStreamfis = new FileInputStream(f);

psmnt.setInt(1, count++);

psmnt.setString(2, saveFile);

psmnt.setString(3, userid);

psmnt.setBinaryStream(4, fis, (int)f.length());

int s = psmnt.executeUpdate();

if(s!=0){}

count++;

String n = f.getName();

if(count != 0)

{

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

90

File file2 = new File(saveFile);

longfilesize = file2.length();

String filename = file2.getName();

Calendar currentDate = Calendar.getInstance();

SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd HH-mm-ss");

String dateNow = formatter.format(currentDate.getTime());

JFileChooserfiletype = new JFileChooser();

String fileTypeName = filetype.getTypeDescription(file2);

long l=file2.lastModified();

SimpleDateFormatsdf = new SimpleDateFormat("MM-dd-yyyyHH:mm:ss");

count1 = st.executeUpdate((new StringBuilder("insert into
storage(filename,type,size,added,username,lastaccessedtime,downloadtime)values('")).append(filename).append("','").append(file
TypeName).append("','").append(filesize).append("','").append(dateNow).append("','").append(userid).append("','").append(sdf.fo
rmat(l)).append("','").append("0").append("')").toString());

String query = (new StringBuilder("select * from fileupload where
path='")).append(n).append("'").toString();

rs = st.executeQuery(query);

if(rs.next())

{

InputStreamfullimage = rs.getBinaryStream(4);

name = rs.getString(2);

byte b[] = new byte[fullimage.available()];

fullimage.read(b);

OutputStream outs = new Base64OutputStream(new FileOutputStream((new
StringBuilder("c:/CloudStorage1/"+userid+"/")).append(name).toString()));

outs.write(b);

outs.close();

size=b.length;

rem=size%6;

size=size/6;

File1=0+size;

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

91

File2=File1+size;

File3=File2+size;

File4=File3+size;

File5=File4+size+rem;

KeyGenerator kgen1 = KeyGenerator.getInstance("AES");

kgen1.init(128);

SecretKey key1 = kgen1.generateKey();

AESEncrypter encrypter1 = new AESEncrypter(key1);

KeyGenerator kgen2 = KeyGenerator.getInstance("AES");

kgen2.init(128);

SecretKey key2 = kgen2.generateKey();

AESEncrypter encrypter2 = new AESEncrypter(key2);

KeyGenerator kgen3 = KeyGenerator.getInstance("AES");

kgen3.init(128);

SecretKey key3 = kgen3.generateKey();

AESEncrypter encrypter3 = new AESEncrypter(key3);

KeyGenerator kgen4 = KeyGenerator.getInstance("AES");

kgen4.init(128);

SecretKey key4 = kgen4.generateKey();

AESEncrypter encrypter4 = new AESEncrypter(key4);

KeyGenerator kgen5 = KeyGenerator.getInstance("AES");

kgen5.init(128);

SecretKey key5 = kgen5.generateKey();

AESEncrypter encrypter5 = new AESEncrypter(key5);

KeyGenerator kgen6 = KeyGenerator.getInstance("AES");

kgen6.init(128);

SecretKey key6 = kgen6.generateKey();

AESEncrypter encrypter6 = new AESEncrypter(key6);

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

92

OutputStream outs1 = new Base64OutputStream(new FileOutputStream((new
StringBuilder("c:/"+storage[0]+"/")).append("1"+name).toString()));

outs1.write(b, 0,size);

OutputStream outs2 = new Base64OutputStream(new FileOutputStream((new
StringBuilder("c:/"+storage[1]+"/")).append("2"+name).toString()));

outs2.write(b, File1,size);

OutputStream outs3 = new Base64OutputStream(new FileOutputStream((new
StringBuilder("c:/"+storage[2]+"/")).append("3"+name).toString()));

outs3.write(b, File2,size);

OutputStream outs4 = new Base64OutputStream(new FileOutputStream((new
StringBuilder("c:/"+storage[3]+"/")).append("4"+name).toString()));

outs4.write(b, File3,size);

OutputStream outs5 = new Base64OutputStream(new FileOutputStream((new
StringBuilder("c:/"+storage[4]+"/")).append("5"+name).toString()));

outs5.write(b, File4,size);

OutputStream outs6 = new Base64OutputStream(new FileOutputStream((new
StringBuilder("c:/"+storage[5]+"/")).append("6"+name).toString()));

outs6.write(b, File5,size);

outs1.close();

outs2.close();

outs3.close();

outs4.close();

outs5.close();

outs6.close();

encrypter1.encrypt(new FileInputStream("c:/"+storage[0]+"/"+"1"+name), new
FileOutputStream("c:/"+storage[0]+"/Encryption/"+"1"+name));

encrypter2.encrypt(new FileInputStream("c:/"+storage[1]+"/"+"2"+name), new
FileOutputStream("c:/"+storage[1]+"/Encryption/"+"2"+name));

encrypter3.encrypt(new FileInputStream("c:/"+storage[2]+"/"+"3"+name), new
FileOutputStream("c:/"+storage[2]+"/Encryption/"+"3"+name));

encrypter4.encrypt(new FileInputStream("c:/"+storage[3]+"/"+"4"+name), new
FileOutputStream("c:/"+storage[3]+"/Encryption/"+"4"+name));

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

93

encrypter5.encrypt(new FileInputStream("c:/"+storage[4]+"/"+"5"+name), new
FileOutputStream("c:/"+storage[4]+"/Encryption/"+"5"+name));

encrypter6.encrypt(new FileInputStream("c:/"+storage[5]+"/"+"6"+name), new
FileOutputStream("c:/"+storage[5]+"/Encryption/"+"6"+name));

File Datacenter;

int a=0;

intaa=0;

for(int k=0;k<6;k++)

{

Datacenter=new File((new StringBuilder("c:/"+storage[aa++]+"/")).append(aa+name).toString());

al.add(Datacenter.length());

}}}

try{

Class.forName("com.mysql.jdbc.Driver").newInstance();

connection = DriverManager.getConnection(connectionURL, "mysql", "mysql");

Statement st5 = connection.createStatement();

psmnt = connection.prepareStatement("insert into matrix(filename,username,v1,v2,v3,v4,v5,v6)
values(?,?,?,?,?,?,?,?)");

psmnt.setString(1, name);

psmnt.setString(2,userid);

psmnt.setLong(3,al.get(0));

psmnt.setLong(4,al.get(1));

psmnt.setLong(5,al.get(2));

psmnt.setLong(6,al.get(3));

psmnt.setLong(7,al.get(4));

psmnt.setLong(8,al.get(5));

intss = psmnt.executeUpdate();

}

catch(Exception e)

{

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

94

System.out.println(e);

}

try{

File ff;

ArrayList<String>l=new ArrayList<String>();

for(int k=1;k<=6;k++)

{

ff=new File("c:/DataCenter"+k+"/"+k+name);

long t=ff.lastModified();

SimpleDateFormatsm=new SimpleDateFormat("MM-dd-yyyyHH:mm:ss");

l.add(sm.format(t));

Class.forName("com.mysql.jdbc.Driver").newInstance();

connection = DriverManager.getConnection(connectionURL, "mysql", "mysql");

Statement st5 = connection.createStatement();

psmnt = connection.prepareStatement("insert into
datacenterinfo(username,filename,datacenter1,datacenter2,datacenter3,datacenter4,datacenter5,datacenter6)
values(?,?,?,?,?,?,?,?)");

psmnt.setString(1,userid);

psmnt.setString(2,name);

psmnt.setString(3,l.get(0));

psmnt.setString(4,l.get(1));

psmnt.setString(5,l.get(2));

psmnt.setString(6,l.get(3));

psmnt.setString(7,l.get(4));

psmnt.setString(8,l.get(5));

intss = psmnt.executeUpdate();

}

catch(Exception e)

{

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

95

System.out.println(e);

}

if(count1 != 0)

{

RequestDispatcher rd1 = request.getRequestDispatcher("Link.jsp");

rd1.forward(request, response);

}

}

catch(Exception e)

{

System.out.println(e);

} }

} }

OUTSOURCEDATA.Java

public class MetaInfo extends HttpServlet {

private static final long serialVersionUID = 1L;

publicMetaInfo() {

super();

}

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException
{

doPost(request,response);

}

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

String Filename=request.getParameter("menu");

PrintWriter out=response.getWriter();

HttpSessionfname=request.getSession();

HttpSessionftype=request.getSession();

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

96

HttpSessionfsize=request.getSession();

HttpSessionfownername=request.getSession();

HttpSessionfdatacenter=request.getSession();

HttpSessionfdate=request.getSession();

try{

Class.forName("com.mysql.jdbc.Driver");

Connection
con=DriverManager.getConnection("jdbc:mysql://localhost:3306/towards","mysql","mysql");

Statement st=con.createStatement();

ResultSetrs=st.executeQuery("select * from storage where filename='"+Filename+"'");

out.println("<html><body><center>File Information</center><table border=2 align=center>");

if(rs.next())

{

out.println("<tr><td>FileName</td><td>"+rs.getString(2)+"</td></tr>");

out.println("<tr><td>FileType</td><td>"+rs.getString(3)+"</td></tr>");

out.println("<tr><td>FileSize(in Kb)</td><td>"+rs.getString(4)+"</td></tr>");

out.println("<tr><td>FileUploaded Date</td><td>"+rs.getString(5)+"</td></tr>");

out.println("<tr><td>OwnerName</td><td>"+rs.getString(6)+"</td></tr>");

out.println("<tr><td>LastAccessedTime</td><td>"+rs.getString(7)+"</td></tr>");

fname.setAttribute("FILENAME", rs.getString(2));

ftype.setAttribute("FILETYPE", rs.getString(3));

fsize.setAttribute("FILESIZE", rs.getString(4));

fdate.setAttribute("FILEDATE", rs.getString(5));

fownername.setAttribute("FILEOWNERNAME", rs.getString(6));

fdatacenter.setAttribute("DATACENTER", rs.getString(7));

}

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

97

}

catch(Exception e)

{

System.out.println(e);

} }

DATA ACCESS

DOWNLOAD.Java

public class Download extends HttpServlet {

private static final long serialVersionUID = 1L;

public Download() {

super();

}

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException
{

doPost(request,response);

}

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException

{

ArrayList<String>al=new ArrayList<String>();

HttpSessionUserId=request.getSession();

String userid=UserId.getAttribute("userid").toString();

ArrayList<Long>oldtime=new ArrayList<Long>();

String[]
storage={"DataCenter0","DataCenter1","DataCenter2","DataCenter3","DataCenter4","DataCenter5","DataCenter6"};

ServletOutputStream op =null;

String s = request.getParameter("menu");

String original_filename = s;

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

98

String name="";

longtstart=System.currentTimeMillis();

try{

File delfile=new File("c:/backup/"+s+"");

if(delfile.exists())

{

delfile.delete();

}

FileOutputStreamfout=(new FileOutputStream("c:/backup/"+s+"",true));

File fff=null;

InputStream fin;

int l=0;

for(int i=1;i<=6;i++)

{

name=i+s;

String src="c:/"+storage[i]+"/"+name+"";

fff=new File(src);

oldtime.add(fff.lastModified());

byte b[] = new byte[(int) fff.length()];

for(fin = new Base64InputStream(new FileInputStream(fff)); fin != null && (l= fin.read(b))
!= -1;)

{

fout.write(b, 0, l);

}

fout.flush();

}

String filename = "c:/backup/"+s+"";

File f = new File(filename);

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

99

int length = 0;

op = response.getOutputStream();

ServletContext context = getServletConfig().getServletContext();

String mimetype = context.getMimeType(filename);

response.setContentType(mimetype == null ? "application/octet-stream" :mimetype);

response.setContentLength((int)f.length());

response.setHeader("Content-Disposition", (new StringBuilder("attachment;
filename=\"")).append(original_filename).append("\"").toString());

bytebbuf[] = new byte[filename.length()];

InputStream in;

for(in = new FileInputStream(f); in != null && (length = in.read(bbuf)) != -1;)

{

op.write(bbuf, 0, length);

}

op.flush();

in.close();

op.close();

fout.close();

long tend=System.currentTimeMillis();

doubletseconds=((double)(tend-tstart))/(double)1000;

}

catch(Exception e)

{

System.out.println(e); }

try{

Calendar currentDate = Calendar.getInstance();

SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd HH-mm-ss");

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

100

String dateNow = formatter.format(currentDate.getTime());

Class.forName("com.mysql.jdbc.Driver");

Connection
con=DriverManager.getConnection("jdbc:mysql://localhost:3306/towards","mysql","mysql");

Statement st=con.createStatement();

Statement st1=con.createStatement();

ResultSetrs=st1.executeQuery("select * from datacenterinfo where
filename='"+s+"'");

intkk=st.executeUpdate("update storage set downloadtime='"+dateNow+"' where
filename='"+s+"'");

}

catch(Exception e)

{

System.out.println(e);

}

}

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

processRequest(request, response);

}

}

DELETE.Java

public class Delete extends HttpServlet {

private static final long serialVersionUID = 1L;

public Delete() {

super();

}

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException
{

doPost(request,response);

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

101

}

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

HttpSessionUserId=request.getSession();

String userid=UserId.getAttribute("userid").toString();

String[]
storage={"DataCenter0","DataCenter1","DataCenter2","DataCenter3","DataCenter4","DataCenter5","DataCenter6"};

String s = request.getParameter("menu");

String name="";

File dfile;

try{

File delfile=new File("c:/CloudStorage1/"+userid+"/"+s+"");

delfile.delete();

for(int i=1;i<=6;i++)

{

name=i+s;

String src="c:/"+storage[i]+"/"+name+"";

dfile=new File(src);

dfile.delete();

}

Class.forName("com.mysql.jdbc.Driver");

Connection
con=DriverManager.getConnection("jdbc:mysql://localhost:3306/towards","mysql","mysql");

Statement st=con.createStatement();

int k=st.executeUpdate("delete from storage where filename='"+s+"' and
username='"+userid+"'");

int k1=st.executeUpdate("delete from fileupload where path='"+s+"' and
username='"+userid+"'");

int k2=st.executeUpdate("delete from matrix where filename='"+s+"' and
username='"+userid+"'");

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

102

int k3=st.executeUpdate("delete from datacenterinfo where filename='"+s+"' and username='"+userid+"'");

RequestDispatcherrd=request.getRequestDispatcher("delete.jsp");

request.setAttribute("Dmsg", "File Was Deleted Successfully");

rd.forward(request, response);

}

catch(Exception e)

{

System.out.println(e);

}

}

}

RESULTS

Graph is one of the efficient method to display the result
visually. The graph helps to evaluate the throughput
performance. The performance analysis means the total

efficiency of the system. The performance analysis is used
to represent, how efficiently the system works. The
performance analysis is represented by the data audited by
the TPA (Third Party Auditor) in the Y-axis and privacy
secured in the X-axis.

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

103

SYSTEM TESTING

6.1 INTRODUCTION

Software testing is a critical element of software quality
assurance and represents the ultimate review of
specification, design and coding. In fact, testing is the one
step in the software engineering process that could be
viewed as destructive rather than constructive.

A strategy for software testing integrates software test case
design methods into a well-planned series of steps that
result in the successful construction of software. Testing is
the set of activities that can be planned in advance and
conducted systematically. The underlying motivation of
program testing is to affirm software quality with methods
that can economically and effectively apply to both strategic
to both large and small-scale systems.
6.2 STRATEGIC APPROACH TO SOFTWARE
TESTING

The software engineering process can be viewed as
a spiral. Initially system engineering defines the role of
software and leads to software requirement analysis where
the information domain, functions, behavior, performance,

constraints and validation criteria for software are
established. Moving inward along the spiral, we come to
design and finally to coding. To develop computer software
we spiral in along streamlines that decrease the level of
abstraction on each turn.

A strategy for software testing may also be viewed
in the context of the spiral. Unit testing begins at the vertex
of the spiral and concentrates on each unit of the software as
implemented in source code. Testing progress is done by
moving outward along the spiral to integration testing,
where the focus is on the design and the construction of the
software architecture. Talking another turn on outward on
the spiral we encounter validation testing where
requirements established as part of software requirements
analysis are validated against the software that has been
constructed. Finally we arrive at system testing, where the
software and other system elements are tested as a whole.

UNIT TESTING

MODULE TESTING

SUB-SYSTEM TESING

SYSTEM TESTING

ACCEPTANCE TESTING

Component Testing

Integration Testing

User Testing

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

104

6.3 Unit Testing
Unit testing focuses verification effort on the smallest unit
of software design, the module. The unit testing we have is
white box oriented and some modules the steps are
conducted in parallel.
6.3.1 WHITE BOX TESTING
This type of testing ensures that
1. All independent paths have been exercised at least once
2. All logical decisions have been exercised on their true

and false sides
3. All loops are executed at their boundaries and within

their operational bounds
4. All internal data structures have been exercised to

assure their validity.
To follow the concept of white box testing we have tested
each form .we have created independently to verify that
Data flow is correct, All conditions are exercised to check
their validity, All loops are executed on their boundaries.

6.3.2 BASIC PATH TESTING
Established technique of flow graph with Cyclomatic
complexity was used to derive test cases for all the
functions. The main steps in deriving test cases were:
Use the design of the code and draw correspondent flow
graph.
Determine the Cyclomatic complexity of resultant flow
graph, using formula:
V(G)=E-N+2 or
V(G)=P+1 or
V(G)=Number Of Regions

Where V(G) is Cyclomatic complexity,

E is the number of edges,

N is the number of flow graph nodes,

P is the number of predicate nodes.

6.3.3 CONDITIONAL TESTING
In this part of the testing each of the conditions were tested
to both true and false aspects. And all the resulting paths
were tested. So that each path that may be generate on
particular condition is traced to uncover any possible errors.
6.3.4 DATA FLOW TESTING
This type of testing selects the path of the program
according to the location of definition and use of variables.
This kind of testing was used only when some local variable
were declared. The definition-use chain method was used in
this type of testing. These were particularly useful in nested
statements.
6.3.5 LOOP TESTING
In this type of testing all the loops are tested to all the limits
possible. The following exercise was adopted for all loops:

1. All the loops were tested at their limits, just above them
and just below them.

2. All the loops were skipped at least once.
3. For nested loops test the inner most loop first and then

work outwards.
4. For concatenated loops the values of dependent loops

were set with the help of connected loop.

CONCLUSION AND FUTURE ENHANCEMENT
A privacy-preserving public auditing system for data

storage security in cloud computing is proposed. The
Homomorphic Linear Authenticator (HLA) is utilized and
random masking is used to guarantee that the TPA would
not learn any knowledge about the data content stored on
the cloud server during the efficient auditing process, which
not only eliminates the burden of cloud user from the
tedious and possibly expensive auditing task, but also
alleviates the users’ fear of their outsourced data leakage.
Considering TPA may concurrently handle multiple audit
sessions from different users for their outsourced data files,
further extend the privacy-preserving public auditing

protocol into a multiuser setting, where the TPA can
perform multiple auditing tasks in a batch manner for better
efficiency. The data is protected through security processes
which include segmentation, encoding and encryption. Thus
the data in the cloud is said to have certain protection
schemes and also found to be effective by monitoring the
data access by the TPA and makes the stored data to be
protected effectively.

The security process followed is to be implemented on
the cloud for further protection of the data than those
provided by the cloud service providers and as a future
extension it is also insisted to further impose any other
security process to be implemented on the cloud for any
unauthorized access and misuse of the data. It is now to
leave the full-fledged implementation of the mechanism on
commercial public cloud as an important future extension,
which is expected to robustly cope with very large scale
data and thus encourage users to adopt cloud storage
services more confidently.

REFERENCE

[1] Cong Wang, Sherman S.M. Chow, Qian Wang, KuiRen,
and Wenjing Lou, “Privacy-Preserving Public Auditing for
Secure Cloud Storage,” - IEEE Transactions on Computers,
vol.62, no. 2, February 2013.

[2] Qian Wang, Cong Wang, KuiRen, Wenjing Lou, and
Jin Li, “Enabling Public Auditability and Data Dynamics
for Storage Security in Cloud Computing,” - IEEE
Transactions on Parallel and Distributed Systems, vol. 22,
no. 5, May 2011.

[3] R. Nithiavathy, “Data Integrity and Data Dynamics with
Secure Storage Service in Cloud,” -Proceedings of the 2013

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 78–105

105

International Conference on Pattern Recognition,
Informatics and Mobile Engineering, February 21-22.

[4] Jun Feng, Yu Chen, Douglas H. Summerville, “A Fair
Multi-Party Non-Repudiation Scheme for Storage Clouds,”
-IEEE Trans. Service Computing, vol. 5, no. 2, 220-232,
Apr.-June 2011.

[5] AyadBarsoum and Anwar Hasan, “Enabling Dynamic
Data and Indirect Mutual Trust for Cloud Computing
Storage Systems,” - IEEE Trans. Parallel and Distributed
Systems, vol. 22, no.5, pp. 847-859, May 2012.

[6] Jens-Matthias Bohli, Nils Gruschka, Meiko Jensen,
Luigi Lo Iacono, and Ninja Marnau, “Security and Privacy-
Enhancing Multicloud Architectures”, - IEEE Transactions
on Dependable and Secure Computing, vol. 10, no. 4, july
/august 2013.

