

Research Article

DOI: <http://dx.doi.org/10.22192/ijamr.2026.13.01.003>

A Study on the Impact of Green Human Resource Management on Employees' Green Innovative Behavior

Yabing Pang¹, Jintong Wei¹

¹Zhejiang Industry & Trade Vocational College, China

Research Project of Zhejiang Federation of Humanities and Social Sciences
(Project Number: 2026N127)

Abstract

Keywords

Green Human Resource Management, Employees' Green Innovative Behavior, Perceived Corporate Environmental Responsibility

Global climate warming has become a focal concern, intensifying the imperative for corporate green transformation and sustainable development. The promulgation of national strategies such as the “dual carbon” goals and ecological civilization construction has provided robust policy support, yet their realization also depends on micro-level actions by enterprises and employees. Against this backdrop, human capital—as the core driver of organizational operations—undergoes green reconfiguration to become a pivotal pillar for sustainable enterprise development. Green Human Resource Management (GHRM) has emerged accordingly. This study reveals that GHRM exerts a significant positive influence on both employees' green innovative behavior and perceived corporate environmental responsibility. Perceived corporate environmental responsibility not only significantly promotes employees' green innovative behavior but also mediates the relationship between GHRM and such behavior. This research expands the theoretical scope of the relationship between GHRM and employees' green behavior, offering new theoretical foundations and practical guidance for enterprises to optimize GHRM practices and effectively stimulate employees' green innovative vitality.

1. Introduction

In recent years, rising global temperatures have garnered widespread attention, thereby heightening the demand for corporate green transformation and sustainable development. This issue has ascended to the strategic level in numerous countries, particularly in China. At the

Fifth Plenary Session of the 13th Central Committee of the Communist Party of China, the concept of green development was emphatically positioned as central, aiming to construct a modern framework characterized by harmonious coexistence between humanity and nature. The 18th National Congress of the Communist Party of China proposed an innovative “five-in-one”

development model, marking a renewed interpretation of ecological civilization and integrating it into the core architecture of modernization theory. In this context, corporate human resource management must progressively adopt a green orientation, leveraging high-quality human capital to drive innovation and achieve new modes of green economic development. Successful implementation of GHRM strategies by enterprises necessitates governmental support and facilitation. Government agencies should strive to create a conducive environment and establish comprehensive support systems to promote the effective adoption of this management paradigm. GHRM has thus emerged in response to these circumstances.

In an era where sustainable development concepts are deeply entrenched, enterprises, in pursuit of long-term survival and growth, have gradually developed and refined an ideological system that binds employees' futures closely with organizational destiny, forming a community of shared interests. By applying green management principles across key human resource functions—including job analysis, recruitment and selection, training and development, compensation design, and performance evaluation—enterprises cultivate and internalize efficient, low-resource-consumption green values among employees. These values advocate green behavioral norms, thereby fostering and consolidating a green corporate culture. GHRM is thus a comprehensive system of practices and methods aimed at achieving sustainable development for both enterprises and employees. It employs green management strategies through efficient, low-impact approaches across all stages of human resource management—job analysis, recruitment, training and development, compensation adjustment, and performance evaluation—to shape employees' green mindset, promote green behavioral patterns, and build a green organizational culture, ultimately facilitating mutual sustainable development.

Existing research has not fully explored the empowering effects of GHRM on employees' green innovative behavior. Given the pronounced

contemporary urgency of this topic, further investigation into the underlying mechanisms linking these constructs is warranted.

This study seeks to advance the field by systematically reviewing and analyzing extant literature to examine the interrelationships among green human resource management, employees' green innovative behavior, and perceived corporate environmental responsibility. As GHRM theory continues to evolve, related scholarly inquiry has matured. Current research predominantly focuses on energy and manufacturing sectors. For instance, Liang Chunshu's study, "Green Human Resource Management and Sustainable Performance in Manufacturing Enterprises: The Mediating Role of Green Innovation—An Empirical Study Based on Guangdong Province", empirically demonstrates that the interaction between GHRM and green innovation enhances overall firm performance, providing theoretical and practical guidance for manufacturing enterprises pursuing sustainable development through green innovation. Related studies have dissected the mechanisms of GHRM functions, offering insights for enterprises to refine management practices and stimulate employee green actions during green transformation, thereby contributing to national green economy and sustainable development goals. However, these investigations lack depth in digital integration, failing to systematically address the reshaping of GHRM processes by AI and big data, and neglect longitudinal tracking as well as differentiation among types of green innovation. Future scholarship should broaden theoretical boundaries to furnish richer theoretical foundations and operational guidance for GHRM application.

Regarding employees' green innovative behavior, extant research predominantly examines firm-level green innovation, with limited exploration at the individual level. For example, Li Yu et al.'s study, "How Do Corporate Environmental Strategies Drive Employees' Green Innovative Behavior? A Comparative Case Study of Liby and Tianshi", establishes that corporate environmental strategy is a critical driver of employees' green

innovative behavior, with heterogeneous effects across its dimensions. In studies of employee behavior, subjective experiences of organizational participation emerge as key influencers of attitudes and actions. Employees not only observe concrete environmental actions but also evaluate underlying motives. Perceived profit-driven environmental responsibility may be viewed as “greenwashing,” potentially suppressing green innovative behavior due to negative affect. Conversely, genuine commitment to environmental missions and clear signals encouraging green innovation can heighten employee engagement and foster integration of environmental values into work practices.

Perceived corporate environmental responsibility integrates regulatory compliance with ethical self-discipline, requiring proactive reduction of environmental harm and remediation of existing damage. Such actions enhance employee organizational loyalty and intrinsic behavioral alignment. Literature review reveals that prior studies primarily examine GHRM's moderating effects on proactivity and moral efficacy. Domestic definitions of perceived corporate environmental responsibility vary: Wang Hong (2010) emphasizes collaborative reflection with external stakeholders (government, investors, consumers, partners, and peers) on environmental conduct in economic activities, adopting rigorous, responsible attitudes to minimize negative impacts and become resource-efficient and environmentally friendly enterprises. Long Chengzhi (2017) defines it as proactive environmentally friendly initiatives undertaken for ethical environmental protection, yielding measurable environmental performance. Zhou Zucheng's (2011) widely accepted conceptualization of corporate social responsibility frames it as comprehensive responsibility toward stakeholders and society, aimed at safeguarding stakeholder rights and advancing societal welfare, encompassing both mandatory baseline obligations and voluntary contributions.

Based on the foregoing, GHRM is defined here as a set of domain-specific human resource

management practices encompassing green recruitment and selection (attracting and selecting environmentally conscious employees), training (enhancing environmental knowledge and skills), performance and compensation management (incorporating green performance criteria), rewards (financial and non-financial incentives), green empowerment, and employee involvement in green initiatives. In this study, GHRM refers to the integration of environmental principles into recruitment, training, appraisal, and incentive processes to cultivate environmental awareness, enhance green competencies, and encourage employees' green innovative behavior. Employees' green innovative behavior denotes proactive generation and application of novel ideas in product design, production, and other work processes to mitigate environmental impact and promote sustainability. In this study, it specifically refers to innovative initiatives undertaken by employees under GHRM guidance (e.g., environmental training and green performance incentives) to reduce environmental harm within their roles.

This study employs empirical methods to examine the driving effect of GHRM on employees' green innovative behavior and the mediating or moderating role of perceived corporate environmental responsibility, thereby providing robust theoretical and practical guidance for enterprises to implement green management, activate employee environmental enthusiasm, and achieve sustainable development.

2. Research Design

2.1 Research Hypotheses

2.1.1 Green Human Resource Management and Employees' Green Innovative Behavior

GHRM integrates environmental and sustainability principles into recruitment, training, performance appraisal, and compensation processes, translating green values into concrete practices. Employees' green innovative behavior encompasses environmentally beneficial

innovative activities in the workplace, such as developing eco-friendly products or designing energy-efficient processes. Supporting evidence includes Zhao Shuai et al. (2025), who, applying dual-factor theory, empirically demonstrated that GHRM enhances employees' green behavior through strengthened environmental training, optimized performance appraisal, and green incentive mechanisms. This relationship is further substantiated by foundational and contemporary scholarship. Renwick et al. (2013) pioneered the application of Ability-Motivation-Opportunity (AMO) theory, positing that GHRM practices (green recruitment, training, and performance management) develop green capabilities, enhance motivation, and provide opportunities, thereby driving environmental management and innovative behavior. Recent cross-national evidence from the hospitality sector (China and Pakistan) confirms that GHRM positively drives green innovative work behavior, mediated by perceived green organizational support and organizational citizenship behavior for the environment (2025, BMC Psychology).

Hypothesis 1: Green human resource management positively influences employees' green innovative behavior.

2.1.2 Green Human Resource Management and Perceived Corporate Environmental Responsibility

GHRM extends beyond individual behavior to positively affect departmental and organizational levels. Perceived corporate environmental responsibility reflects employees' cognitive judgments, value evaluations, and affective experiences regarding the organization's fulfillment of environmental obligations, strengthening identification with its environmental attributes. Empirical support derives primarily from leading Chinese studies. Tang Guiyao et al. (2018) found, using listed Chinese firms, that executive HR commitment positively influences environmental performance via GHRM mediation, underscoring GHRM's role in enhancing perceived environmental responsibility. Ren Shuli and Li Mingfang (2024)

constructed a social identity theory-based model confirming that GHRM positively affects environmental performance by elevating job satisfaction and organizational commitment, thereby deepening employees' cognitive and evaluative perceptions of environmental responsibility. Additional hospitality and manufacturing studies (2024) corroborate that GHRM fosters positive feedback on corporate environmental conduct through green culture and innovation mechanisms.

Hypothesis 2: Green human resource management positively influences perceived corporate environmental responsibility.

2.1.3. Perceived Corporate Environmental Responsibility and Employees' Green Innovative Behavior

Perceived corporate environmental responsibility constitutes employees' subjective interpretation of organizational environmental conduct. Supporting mechanisms include enhanced environmental identification, motivation, and commitment. Lu Hui et al. (2019) demonstrated, using Chinese enterprise data, that perceived environmental responsibility positively influences pro-environmental behavior, mediated by biospheric values and environmentally oriented servant leadership. Zhang Yawei et al. (2022) confirmed, in high-energy-consumption industries, that perceived responsibility promotes green innovative behavior via organizational identification, emphasizing heightened emotional commitment and innovative motivation. Hospitality sector evidence further validates this pathway through organizational citizenship behavior for the environment mediation.

Hypothesis 3: Perceived corporate environmental responsibility positively influences employees' green innovative behavior.

2.1.4. The Role of Perceived Corporate Environmental Responsibility

Chen Jiali and Zhang Aiqing (2023) demonstrated, in Chinese manufacturing, that

perceived corporate environmental responsibility mediates GHRM's effect on employees' green innovative behavior via chained mediation involving green self-efficacy and environmental commitment. Zhu Peidong et al. (2024) similarly identified perceived responsibility as a psychological mediator enhancing environmental identification and innovative behavior.

Hypothesis 4: Perceived corporate environmental responsibility mediates the relationship between green human resource management and employees' green innovative behavior.

Based on the aforementioned hypotheses, this study develops its research model.

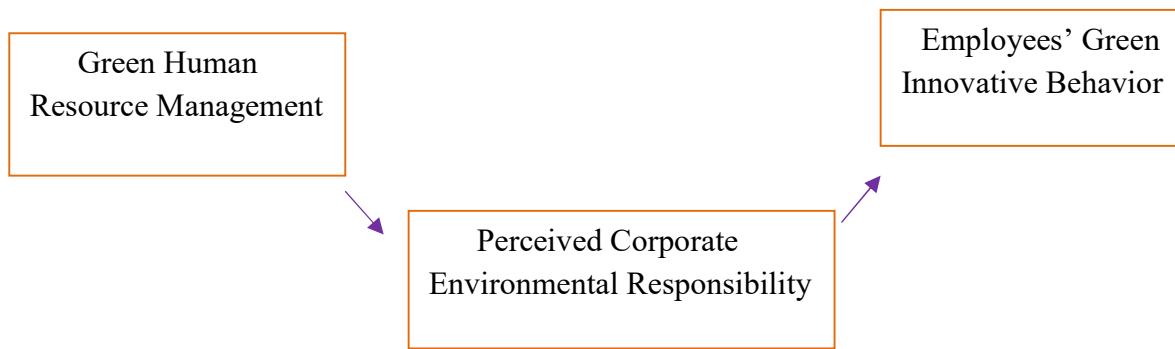


Figure1: Research Model

2.2 Measurement Instruments

This study employs questionnaire survey methodology for empirical analysis, using validated five-point Likert scales (1 = "strongly disagree" to 5 = "strongly agree"). Detailed items are provided in the Appendix.

2.2.1 Green Human Resource Management

Measured using Dumont et al.'s six-item scale (e.g., "My organization considers employees' workplace environmental behavior in performance appraisals"). Cronbach's $\alpha = 0.850$.

2.2.2 Employees' Green Innovative Behavior

Measured using a four-item scale adapted by Liu Zonghua and Li Yanping from Zhang et al. (e.g., "This employee frequently proposes ideas to reduce waste and harmful emissions"). Cronbach's $\alpha = 0.826$.

2.2.3 Perceived Corporate Environmental Responsibility

Measured using El Akremi et al.'s seven-item scale (e.g., "My company encourages members to adopt environmentally friendly behaviors (waste sorting, conserving water and electricity) to protect the natural environment"). Cronbach's $\alpha = 0.844$.

2.2.4 Control Variables

Gender, age, education, organizational tenure, and innovative self-efficacy (measured via Tierney et al.'s scale, Cronbach's $\alpha = 0.811$).

3. Empirical Analysis

3.1 Research Sample

3.1.1 Sample Collection

Data were collected via online questionnaires from employees at six enterprises in Zhejiang Province. A total of 120 questionnaires were distributed; after screening, 100 valid responses were retained (effective recovery rate: 83.3%).

3.1.2 Sample Characteristics

years 22%, 46–55 years 18%, ≥56 years 7%. Education: Junior college or below 32%, Bachelor's 39%, Master's 15%, Doctorate

14%. Tenure: ≤2 years 26%, 3–5 years 44%, 6–10 years 19%, >10 years 11%

Table 1 Sample Distribution

Name	Option	Quantity	Percentage
Sexual	male	58	58%
	female	42	42%
Age	25 years old and below	17	17%
	26-35 years old	36	36%
	36-45 years old	22	22%
	46-55 years old	18	18%
	56 years old and above	7	7%
Education Level	High school diploma or below	32	32%
	Associate degree	39	39%
	Bachelor's degree	15	15%
	Master's degree or above	14	14%
Years of Experience	Less than 2 years	26	26%
	3-5 years	44	44%
	6-10 years	19	19%
	10 years and above	11	11%

3.2 Reliability and Validity Analysis

3.2.1 Reliability Analysis

All Cronbach's α coefficients exceeded 0.8, indicating high reliability.

Table 2 Cronbach's α Coefficients

Variable	Title	CITC	Cronbach α
Green Human Resource Management	A1	0.671	0.850
	A2	0.646	
	A3	0.603	
	A4	0.720	
	A5	0.597	
	A6	0.565	
Employees' Green Innovative Behavior	B1	0.592	0.826
	B2	0.640	
	B3	0.671	
	B4	0.760	
Perceived Corporate Environmental Responsibility	C1	0.704	0.844
	C2	0.656	
	C3	0.646	
	C4	0.718	

3.2.2 Validity Analysis

Communalities > 0.4; KMO = 0.946; cumulative variance explained after rotation = 67.779% (>50%).

Table 3 Validity Analysis

Title	factor loading coefficient			Communalities
	Factor 1	Factor 2	Factor 3	
A1	0.491	0.380	0.395	0.542
A2	0.799	0.187	0.293	0.760
A3	0.197	0.736	0.303	0.673
A4	0.572	0.459	0.351	0.662
A5	0.315	0.755	0.101	0.681
A6	0.255	0.107	0.862	0.819
B1	0.693	0.350	0.162	0.629
B2	0.291	0.446	0.600	0.644
B3	0.426	0.429	0.523	0.639
B4	0.637	0.465	0.236	0.678
C1	0.387	0.631	0.324	0.653
C2	0.369	0.763	0.148	0.740
C3	0.761	0.275	0.239	0.712
C4	0.597	0.437	0.334	0.658
Eigenvalue (before rotation)	7.966	0.831	0.692	-
Variance explained (%) (before rotation)	56.900%	5.934%	4.945%	-
Cumulative variance explained (%) (before rotation)	56.900%	62.834%	67.779%	-
Eigenvalue (after rotation)	3.784	3.484	2.221	-
Variance explained (%) (after rotation)	27.026%	24.887%	15.866%	-
Cumulative variance explained (%) (after rotation)	27.026%	51.913%	67.779%	-
Kaiser-Meyer-Olkin (KMO) value	0.946			-
Bartlett's test of sphericity	832.709			-
df	91			-
p-value	0.000			-
Where A represents Green Human Resource Management, B represents Employees' Green Innovative Behavior, and C represents Perception of Corporate Environmental Responsibility.				

3.3 KMO and Bartlett's Test

KMO = 0.946 (excellent); Bartlett's test $p < 0.001$, confirming suitability for exploratory factor analysis.

Table 4 KMO and Bartlett's Test

	Kaiser–Meyer–Olkin (KMO) value	0.946
Bartlett's test of sphericity	Approximate chi-square	832.709
	df	91
	p value	0.000

3.4 Correlation Analysis

GHRM strongly positively correlated with employees' green innovative behavior ($r = 0.559$, $p < 0.001$) and moderately with perceived

corporate environmental responsibility ($r = 0.497$, $p < 0.001$). Perceived responsibility strongly correlated with green innovative behavior ($r = 0.542$, $p < 0.001$).

Table 5 Pearson correlation

	1	2	3	4	5	6
sexual	-					
age	0.559***	-				
Education Level	0.497***	0.542***	-			
Green Human Resource Management	0.041	0.115	0.000	(0.90)	-	
Employees' Green Innovative Behavior	0.495***	0.602***	0.602***	0.173*	(0.88)	-
Perceived Corporate Environmental Responsibility	0.106	0.205**	0.020	-0.059	0.121	(0.92)

* $p < 0.1$ ** $p < 0.05$ *** $p < 0.01$

3.5 Confirmatory Factor Analysis

In this study, confirmatory factor analysis (CFA) was conducted using AMOS 22.0 to evaluate the fit indices of various factor models and ensure the discriminant validity among the variables. Specifically, three alternative models were

constructed: a one-factor model, a two-factor model, and a three-factor model. The three-factor model comprised Green Human Resource Management, Employees' Green Innovative Behavior, and Perception of Corporate Environmental Responsibility. The two-factor model combined Green Human Resource

Management and Perception of Corporate Environmental Responsibility into a single factor, while treating Employees' Green Innovative Behavior as a separate factor. The one-factor model merged all three constructs (Green Human Resource Management + Employees' Green

Innovative Behavior + Perception of Corporate Environmental Responsibility) into a single factor. the three-factor model exhibited superior fit ($\chi^2 = 65.207$, df = 59, CFI = 0.992, RMSEA = 0.032, RMR = 0.066) compared to two- and one-factor models, confirming discriminant validity.

Table 6 Confirmatory Factor Analysis Model

Multi-factor models	χ^2	df	χ^2/df	RMSEA	RMR	CFI	NFI
Three-factor model	65.207	59	1.105	0.032	0.066	0.992	0.923
Two-factor model a	77.011	51	0.645	0.031	0.041	1.012	0.098
Two-factor model b	86.399	53	0.646	0.028	0.043	1.016	0.973
Single-factor model	100.674	62	1.088	0.029	0.065	0.995	0.939

3.6 Hypothesis Testing

The mediation effect was examined via Baron et al.'s (1986) method, with results showing that: GHRM had a significant direct effect on employees' green innovative behavior ($c = 0.433$, $p < 0.001$); after including perception of corporate environmental responsibility (PCER) as a mediator, this direct effect became insignificant ($c' = 0.167$, $p > 0.05$); GHRM positively affected PCER ($a = 0.297$, $p < 0.001$), and PCER further influenced employees' green innovative behavior ($b = 0.242$, $p < 0.001$). Thus, PCER played a full mediating role between GHRM and employees' green innovative behavior.

Model 1 results showed GHRM positively influenced employees' PCER ($\beta = 0.803$, $p < 0.001$), which subsequently facilitated their green

innovative behavior ($\beta = 0.752$, $p < 0.001$). Hypothesis 2 was therefore supported.

Model 3, which integrated GHRM, employees' PCER, and green innovative behavior, revealed that PCER directly positively impacted green innovative behavior ($\beta = 0.374$, $p < 0.001$), and GHRM remained a significant driver of this behavior ($\beta = 0.452$, $p < 0.001$). Hypotheses 3 and 4 were thus supported.

Additionally, the Bootstrap method further verified PCER's mediating effect. Results showed an indirect effect coefficient of 0.30 with a 95% confidence interval [0.18, 0.42] (excluding zero), confirming PCER's significant mediating role. The reduced regression coefficient also indicated PCER's partial mediating effect between GHRM and employees' green innovative behavior.

Table 7 Hierarchical Regression Analysis Results

Variables	Factor 1		Factor 2		Factor 3	
	β value	Pvalue	β value	P value	β value	P value
Control Variables						
sexual	0.145	0.033	0.035	0.589	-0.009	0.589
age	-0.271	0.001	-0.055	0.389	0.011	0.389
Years of Experience	0.566	0.023	0.075	0.261	-0.019	0.261
Education Level	0.039	0.062	-0.005	0.943	0.048	0.943
Independent Variable						
Green Human Resource Management			0.752	0.000	0.452	0.000
Mediating Variable						
Perceived Corporate Environmental Responsibility					0.374	0.000
Model Statistics						
R^2	0.553		0.754		0.790	
ΔR^2	0.572		0.201		0.036	
F	29.974		58.98		59.463	
ΔF	2.901	0.024	118.655	<0.001	41.225	<0.001

4. Conclusions and Implications

4.1 Conclusions

National “dual carbon” goals and ecological civilization initiatives provide policy support yet require micro-level enterprise and employee actions. Human capital’s green reconfiguration is pivotal for sustainable development, with GHRM emerging accordingly. Empirical results from 100 employees at six Zhejiang enterprises confirm that GHRM significantly influences employees’ green innovative behavior, partially mediated by perceived corporate environmental responsibility.

4.2 Managerial Implications

4.2.1 Integrate GHRM into Core Strategy

Embed GHRM within sustainability strategy through top-level design. In recruitment, prioritize environmental awareness via structured interviews and simulations. Training should combine environmental cognition with practical green skills. Performance and reward systems must incorporate quantifiable green metrics linked to compensation and promotion.

4.2.2 Strengthen Transmission of Perceived Corporate Environmental Responsibility

Assess candidates' alignment with corporate environmental values. Regularly communicate environmental progress and outcomes. Provide participation opportunities in green decision-making and empower employees to propose and implement green initiatives.

4.2.3 Leverage Leadership in GHRM

Implementation

Train leaders in green development principles and model green behavior. Decompose green goals to departmental and individual levels. Provide resources and timely recognition for green innovation. Establish bidirectional leader-employee communication channels for continuous refinement.

4.3 Limitations and Future Directions

4.3.1 Limitations

This study is not without limitations. First, the sample is predominantly confined to 100 questionnaire responses obtained from six enterprises located in Zhejiang Province, China. Such a sampling frame suffers from narrow geographical coverage and lacks differentiation across industry categories. In contrast, prior scholarship has predominantly examined the impact of green human resource management (GHRM) on employees' green behaviors based on nationwide, multi-industry samples (Tang et al., 2015; Zhou & Zhang, 2018). To address this gap, future research should expand the sample scope to encompass diverse geographical regions and industrial sectors, thereby enhancing the generalizability and external validity of the research findings.

Second, the current study adopts a relatively parsimonious variable framework and fails to incorporate potential moderating variables such as green organizational climate and employees' green values. Extant research has demonstrated

that these factors can significantly moderate the mediating mechanisms through which GHRM exerts its influence on employees' green innovation behaviors (Zhou & Zhang, 2018; Jia et al., 2022), and such variables merely represent the "tip of the iceberg." Moving forward, future inquiries could further integrate constructs such as green psychological climate (Tang et al., 2021), employees' green values (Zhou & Zhao, 2023), and green psychological capital to unravel more intricate and comprehensive causal pathways.

Third, the research design relies on cross-sectional data, which inherently constrains the ability to establish causal relationships and examine the long-term dynamic effects among the focal variables. As highlighted in Tang et al. (2015) and the critical review by Liu & Li (2020), the mechanisms and outcomes of GHRM necessitate investigation through longitudinal tracking studies to capture their temporal dynamics and evolutionary trajectories over time.

4.3.2. Future Directions

Expand sample scope across regions, industries, and scales. Incorporate moderating variables and complex mediation chains. Adopt longitudinal or experimental designs. Explore digital transformation (AI, big data) impacts on GHRM.

References

Liang Chunshu. Green Human Resource Management and Sustainable Performance in Manufacturing Enterprises: The Mediating Role of Green Innovation—An Empirical Study Based on Guangdong Province [J]. SME Management and Technology, 2025, (14):42-47+51.

Wang Canhao, Zhang Meng, Ma Hongtao. Green Human Resource Management and Green Innovation in Agricultural Enterprises: An Ambidexterity Perspective [J/OL]. Xinjiang Farm Economy, 1-16.

Arfi WB, Hikkerova L, Sahut JM. External knowledge sources, green innovation and performance [J]. Technological Forecasting and Social Change, 2018, 129:210-220.

Zhang Zijing, Zhu Keyu, Wang Xiaojia. Research on Innovation of Enterprise Human Resource Management Mode under Green Economy Background [J]. Proceedings of the 15th (2020) China Management Annual Conference. Xie Jizhu. Research on the Impact of Green Human Resource Management on Employees' Green Behavior. Guilin University of Technology, 2025.

Ma Ling, Li Yu, Zhao Shuming, et al. How Do Corporate Environmental Strategies Drive Employees' Green Innovative Behavior? A Comparative Case Study of Liby and Tianshi [J]. Management Case Studies and Review, 2025, 18(05):612-629.

Dumont J, Shen J, Deng X. Effects of green HRM practices on employee workplace green behavior: The role of psychological green climate and employee green values [J]. Human Resource Management, 2017, 56(4): 613-627.

Liu Zonghua, Li Yanping. The Impact of Green Human Resource Management on Employees' Green Innovative Behavior: The Roles of Green Mindfulness and Green Self-Efficacy [J]. China Human Resource Development, 2020, 37(11):75-88.

Tierney P, Farmer SM. Creative Self-Efficacy: Its Potential Antecedents and Relationship to Creative Performance [J]. The Academy of Management Journal, 2002, 45(6):1137-1148.

Hart S L. A natural-resource-based view of the firm [J]. Academy of Management Review, 1994, 19(4): 986-1014.

Zhao Shuai, Yao Mingke. Research on the Relationship between Green Human Resource Management and Employees' Green Behavior [J]. Market Modernization, 2025, (24):104-107.

Liu Yuxin. Research on the Impact of Green Human Resource Management on Employees' Green Creativity [D]. Guangzhou University, 2025.

Zhang Ke. Research on the Impact of Green Human Resource Management on Employees' Green Innovative Behavior at Company A [D]. Zhejiang Gongshang University, 2024.

Wang Yibin. Research on Mechanisms of Corporate Environmental Strategy Driving Employees' Green Innovative Behavior [D]. Hebei University of Technology, 2023.

Access this Article in Online	
	Website: www.ijarm.com
Quick Response Code	Subject: Human Resource Management
DOI: 10.22192/ijamr.2026.13.01.003	

How to cite this article:

Yabing Pang, Jintong Wei. (2026). A Study on the Impact of Green Human Resource Management on Employees' Green Innovative Behavior. Int. J. Adv. Multidiscip. Res. 13(1): 18-29.

DOI: [http://dx.doi.org/10.22192/ijamr.2026.13.01.003](https://doi.org/10.22192/ijamr.2026.13.01.003)