
Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

34

International Journal of Advanced Multidisciplinary Research
ISSN: 2393-8870
www.ijarm.com

(A Peer Reviewed, Referred, Indexed and Open Access Journal)
DOI: 10.22192/ijamr Volume 11, Issue 3 -2024

Research Article

Exploring the Use of ChatGPT for Resolving
Programming Bugs

Hussaini Dan’azumi1, Dr. Yakubu Bala Mohammed2*, and Mahmood Saidu
Badara3

1Department of Computer Science, Abubakar Tatari Ali Polytechnic, Bauchi,
Nigeria, Bauchi-State, Jos Road 0094, Nigeria.
E-mail: hussainidanazumi@gmail.com
2*Department of Computer Science, Abubakar Tatari Ali Polytechnic, Bauchi,
Nigeria, Bauchi-State, Jos Road 0094, Nigeria.
E-mail: mohammedbala0079@gmail.com
3Department of Computer Science, Abubakar Tatari Ali Polytechnic, Bauchi,
Nigeria, Bauchi-State, Jos Road 0094, Nigeria.
E-mail: Mahmood_saidu@yahoo.com

Abstract

ChatGPT is an advanced language model that has been gaining attention in the
natural language processing field. However, its functionalities go beyond language-
related tasks. ChatGPT can also serve as a robust tool for debugging software code.
Debugging holds crucial significance in the software development process as bugs,
or code errors, can significantly impact the functionality and security of
applications. The process of identifying and rectifying bugs using traditional
debugging approaches can be labour-intensive and time-consuming, typically
requiring the expertise of skilled developers. With the growing complexity of
software applications, there is an increasing demand for efficient and precise
debugging solutions. Thus, the purpose of this study is to investigate the
effectiveness of ChatGPT in identifying, predicting, explaining, and resolving
programming bugs. Findings of the study revealed that ChatGPT can to analyze and
comprehend code. Also, the review results discovered that ChatGPT has the
potential to streamline the debugging process, making it more suitable for
developers with varying experience levels. Lastly, the study offers insights into
integrating ChatGPT into the software development workflow, and proposed
directions for upcoming studies.

Keywords

ChatGPT,
Programming Bugs,
Debugging
techniques,
Bugs Prediction.

DOI: http://dx.doi.org/10.22192/ijamr.2024.11.03.005

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

35

1. Introduction

Nowadays, computer applications (programs)
play a significant role in addressing real-world
problems (Modi et al., 2013). However, Bugs in
computer code can lead to serious problems, such
asminor software crashes,data loss, and security
vulnerability. Surameery and Shakor (2023) and
(Zhong & Su, 2015) in their studies argued that
debugging code i.e., the “process of searching and
fixing program bugs is the most important aspect
of software development that can be complex, and
time-consuming”. Debugging is the process of
spotting and correcting errors, or bugs, in
software code (Morovati et al., 2023). Bugs can
happen because of different stuff, like typos,
wrong syntax, wrong logic, or unexpected
inputs.Bharadwaj and Parker (2023) in their work
stressed that bugs can make the program act
weird, give the wrong answers, or even crash. The
authors argued that “it is a critical part of the
software development process, as it ensures that
software applications are functioning correctly
and efficiently” (Nathalia et al., 2023). Though,
studies (Dakhel et al., 2023; Nistor et al., 2013;
Xuan et al., 2016) have shown that software
engineers have done a lot of research in an
attempt to limit the number of bugs found in the
software development process in order to make
codes better, however, bugs (i.e., errors) still
remain issue for software developers (DeLiema et
al., 2023; Kang et al., 2023; Xin & Reiss, 2017).

Recent advancements in artificial intelligence
(AI) have offers new opportunities for automating
different software development tasks e.g., finding
and fixing programming bugs i.e., debugging
(Nagwani & Suri, 2023). Jesse et al. (2023) in
their work contended that nowadays, “developers
can use AI coding tools that get their strength
from models trained on huge amounts of open-
source code to trace and fix programming bugs”
such as Copilot and ChatGPT. Copilot is an AI-
powered coding assistant developed by GitHub
and OpenAI. It uses machine learning models
trained on vast amounts of open-source code to
assist developers in writing code more efficiently

and effectively. It has the ability to suggest code
completions, helps with writing functions, and
provides context-aware code suggestions as
developers write code in their Integrated
Development Environment (Perry et al., 2023).
While ChatGPT on the other hand ChatGPT is a
cutting-edge language model built on the GPT
framework (Zhang et al., 2023). Since its
launchon November 30, 2022, ChatGPT has
gained immense popularity as users explore its
features and get more accustomed to using it
(Yilmaz & Yilmaz, 2023). It possesses numerous
undiscovered capabilities that could bring about
major changes in various sectors, from online
shopping to mental healthcare. Though these
capabilities are still developing, they have the
potential to revolutionize our lifestyles,
professions, and interactions. Additionally,
ChatGPT is capable of handling a diverse array of
tasks, including debugging. Thus, the purpose of
this research is to examine the potential benefits
of employing AI-based debugging tools,
specifically ChatGPT to enhance the efficiency
and accuracy of the debugging process.

The review illustrates the viability and efficacy of
leveraging ChatGPT for identifying and rectifying
errors in computer code. The review results will
offer insights into the capabilities of AI within
software development and will inform the
creation of future AI-driven tools for debugging
code.

2. Theoretical Background

2.1 ChatGPT as Debugging Tool

In recent past, there has been a lot of focus on
Large Language Models (LLMs) due to their
robustness in processing programming languages
for different Software Engineering (SE) tasks
(Zhang et al., 2023). These LLMs usually go
through a pre-training-and-finetuning process [12,
49], meaning they're first trained with self-
supervised training on a big unlabelled collection
to get general knowledge, and then adjusted with
supervised training on a smaller labelled
collection to fit a particular task(Liu et al., 2024).

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

36

Among the various LLMs, ChatGPT is considered
by many as one of the most widely used language
models, and it's being looked at by researchers in
various fields, such as code summarization, code
generation, and test generation(Sun et al., 2023).

Tufano et al. (2019), claimed that ChatGPT is a
prompt-based LLM with reinforcement learning
from human feedback, allowing it to engage with
users through dialogues that mimic human
interactions. Recently, ChatGPT has been getting
a lot of attention for its remarkable ability to
understand and respond to human-initiated
conversations. In the context of Automated
Program Repair (APR), ChatGPT has
demonstrated exceptional performance in
resolving issues in popular datasets such as
“Defects4J” Plein et al. (2023) and “QuixBugs”
Haque and Li (2023).

Sobania et al. (2023) in their work analyze how
ChatGPT repairs programs by both making single
requests and engaging in further discussions with
it. Additionally, Cao et al. (2023) examined the
effectiveness of ChatGPTs in fixing deep learning
programs. The authors found that ChatGPT has
the ability to trace and fix bugs in various deep
learning programs. Also, Xia and Zhang (2023) in
their study investigated the efficacy of Chatbot,
specifically ChatGPT in tracing and fixing
program bugs. The authors introduce an APR
method based on ChatGPT that maximizes
conversations by providing immediate feedback
on previous patches. Surameery and Shakor
(2023) and Biswas (2023) in their studies argued
that ChatGPT has the capability to identify bugs
in programs, isolate the bugs, and fix them in a
more robust and flexible manner compared to
other traditional debugging approaches. The
authors highlight some key features of ChatGPT
that could be helpful in identifying and resolving
bugs in computer programs. These features
encompass; i) Natural Language Processing
(NLP) Skills. The authors claimed that ChatGPT
has the ability to boast advanced NLP abilities,
such as understanding and generating text that
resembles human language, which may be
beneficial for code analysis as it enables the
model to grasp the purpose behind the code and

spot potential bugs based on the language used, ii)
Comprehensive Knowledge Representation i.e.,
ChatGPT has undergone extensive training on a
wide array of text data, including details about
software development and programming
languages. Thus, enabling it to have a thorough
understanding of the knowledge and principles
associated with software development, which can
be utilized to detect and rectify bugs in code, iii)
Pattern Recognition Identification i.e., ChatGPT
excels in recognizing patterns within text data,
which aids in bug detection in code, and pinpoint
recurring patterns in code often linked to specific
bug types, iv) Error Refinement i.e., With its
extensive training on large volumes of text data,
ChatGPT can propose corrections to code,
including bug fixes, which streamlines the
debugging process, reducing the time and effort
needed to locate and resolve bugs, v) Adaptability
i.e., ChatGPT can generalize from its training
dataset to new onesand other unseen examples.
Thus, making it a valuable tool for debugging
code as it enables the model to identify bugs in
fresh code based on its prior knowledge.

2.2 ChatGPT Versus Traditional Debugging
Methods

ChatGPT is a model for natural language
processing, which means it's trained to grasp
human language(Biswas, 2023). However, it can
also be trained on programming languages and the
syntax used in software code. For instance, when
faced with a piece of code, ChatGPT can analyze
it and spot potential problems(Liu et al., 2024).
It’s capable of detecting various errors in code,
including syntax, logic, and semantics.Syntax
errors involve mistakes in the way code is written,
such as missing or extra punctuation, and
incorrect syntax(Reiche & Leidner, 2023). While
logical errors occur when code doesn't perform as
expected, even if it's written correctly(Liu et al.,
2023). Semantic errors happen when the code is
technically accurate but doesn't produce the
desired results(Yilmaz & Yilmaz, 2023).

ChatGPT can serve as a debugger in multiple
ways. It can aid in understanding code by
responding to queries about syntax, function

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

37

behaviour, or code structure. For instance, a
developer can ask ChatGPT about a specific
function's definition or usage, and it can offer a
detailed explanation to help the developer use the
function correctly. It can assist in identifying and
rectifying syntax errors, such as missing brackets
or semicolons, by suggesting corrections or
indicating where the error lies(Rahman &
Watanobe, 2023).Furthermore, ChatGPT can help
pinpoint the underlying cause of issues by
explaining error messages, providing context on
the code's operating environment, or proposing
potential solutions to a problem(Meyer et al.,
2023).

In the usual debugging process using traditional
methods, once the error is found, developers can

proceed to apply a solution to address the
problem. Making changes to the code, adjusting
settings, and/or making other modifications to the
software are all steps involved in fixing bugs (Do
et al., 2018).Benton et al. (2021) and Ghosh and
Singh (2020) in their works stressed that
“traditional debugging often includes a significant
amount of trial and error, and it can be frustrating
and time-consuming”. The authors argued that in
a typical debugging process (i.e., traditional
methods), a successful debugging and bug-fixing
process “requires a combination of technical
expertise, teamwork, and careful attention to
details”. Thus, making the process cumbersome
as shown in Figure 1.

Figure 1: Traditional Debugging Methods (Haque & Li, 2023).

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

38

In contrast to the traditional debugging process,
Das et al. (2024) and Haque and Li (2023) argued
that AI debugging tools, specifically ChatGPT
have the skills to identify the main reasons for
problems (i.e., bugs in programs) by “explaining
the error messages, providing context on the

environment in which the code is running, and
even suggest potential solutions to the identified
problems". The authors highlight some general
steps which ChatGPT might take to identify,
analyze, and debug a piece of programming code
and fix it as shown in Figure 2.

Figure 2: ChatGPT Debugging Approach (Haque & Li, 2023).

As shown in Figure 2, the debugging process via
ChatGPT consists of at least seven stages as per
(Haque & Li, 2023). i)The Input phase, in the
input phase, the programmer provides the code to
ChatGPT alongside a description of the problem
they're facing. ii) Analysis phase, in the second
stage, ChatGPT examines the code using natural
language processing and machine learning
methods. It identifies all possible issues that are
likely the cause of the bugs such as syntax errors
or logical discrepancies and creates a list of
potential solutions, iii) Ranking phase, in the
ranking stage, ChatGPT ranks the potential
solutions based on how relevant and likely they
are to succeed. It might take into account factors
such as the programmer's past actions, code
patterns, and the success rates of similar fixes, iv)
Suggestion phase, where ChatGPT generates a

suggestion for resolving the bug, usually in
natural language. The suggestion might involve
altering the code itself, or it could propose
changes to the environment or configuration
settings, v) In the Feedback phase, here the
programmer assesses the suggestion and gives
feedback to ChatGPT. The coders might approve
the suggestion, tweak it, or reject it entirely. This
feedback helps enhance the accuracy of future
suggestions, vi) Integration phase, in this stage, if
the programmer approves the suggestion given by
ChatGPT in the fifth step, they incorporate the
proposed fix into their codebase. Additionally,
ChatGPT might also offer tools for automating
the integration process, such as code restructuring
or testing frameworks that can enhance codes i.e.,
the enhancement phase.

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

39

Literature (Surameery & Shakor, 2023; Xia &
Zhang, 2023; Xin & Reiss, 2017) have shown that
both ChatGPT and traditional debugging tools
have their own strengths and weaknesses. The
best approach to solve a specific programming
bug will depend on the particular circumstances
of the bug and the developer's experience and
preferences. Debugging tools like integrated
development environments (IDEs) and debuggers
offer a variety of features to help developers
identify and fix bugs, such as breakpoints,
variable inspection, and trace analysis. However,
these tools can be complex to use and may require

significant expertise to fully utilize. On the flip
side, ChatGPT offers a more accessible and
intuitive method for solving programming bugs.
Its natural language processing and knowledge
representation capabilities enable it to analyze
code snippets and provide explanations for bugs
in a manner that developers can easily
comprehend. This can be especially helpful for
identifying and fixing more complex bugs. The
strengths of ChatGPT as a debugging tool
compared to other conventional debugging tools
are offered in Table 1.

Table 1: Comparisons between ChatGPT and Conventional Debugging Tools

Ability Explanation

Cost Traditional debugging tools and methods, like IDEs and debuggers, might come
with a high price tag, and difficult to use, whereas ChatGPT is commonly
available as a cloud-based service with a pricing model that offers more flexibility.

Speediness ChatGPT can offer speedy and effective bug explanations and predictions, while
traditional debugging tools may take longer to execute and deliver results.

Precision The precision of ChatGPT regarding bug predictions and explanations may be
influenced by the quality of its training data, whereas “traditional debugging tools
and techniques might provide a greater level of accuracy, but require a deeper
understanding of the codes”.

Flexibility Traditional debugging tools have the potential for extensive customization, while
ChatGPT is structured to function immediately and might not provide equivalent
customization options.

User-
friendliness

ChatGPT has the ability to generate natural language,which makes it simple for
developers to grasp its outcomes, while traditional debugging tools may be more
intricate and challenging to utilize.

Incorporation
with other
existing tools

Conventional debugging tools can be merged with other tools and systems,
whereas ChatGPT might not provide an equivalent level of integration.

Scalability ChatGPT have the ability to debug code on a large scale, whereas traditional
debugging tools might face challenges in handling extensive and intricate
codebases.

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

40

3. Results and Discussions

In this section, results regarding the effectiveness
of ChatGPT in identifying, isolating, and fixing
programming bugs from prior studies were
offered in the following subsections.

3.1 ChatGPT as Bug Explainer

Regarding bug explanation, the study results
revealed that ChatGPT can assist in elucidating
bugs, detailing why a specific portion of code
triggers a bug and suggesting solutions for
rectification. This aids in enhancing
comprehension of bugs and offers insights into
averting similar issues in the future. This finding
is in line with the findings of Lau and Guo (2023),
Busch et al. (2023), and Surameery and Shakor
(2023) who argued that “ChatGPT can provide
explanations for programming bugs by using its
knowledge representation and natural language
generation capabilities”. Furthermore, in
explicating programming bugs, ChatGPT
leverages its knowledge representation and
natural language generation capabilities. Upon
detecting a bug in code, ChatGPT utilizes its
comprehension of the code and the connections
between the code and the bug to craft an
explanation. This elucidation aids code
developers in grasping the root cause of the bug
and its resolution(MacNeil et al., 2024).

3.2 ChatGPT as Bug Predictor

Concerning bug prediction, the review results
revealed that ChatGPT has the capability to
anticipate the likelihood of bugs in fresh code,
drawing on its comprehension of the connections
between code and bugs. This proves valuable in
spotting bugs early in the development phase,
preventing them from becoming more challenging
and costly to rectify. This result is reinforced by
the findings of Chen et al. (2024) who stressed
that regarding bug prediction, ChatGPT can
harness its skill to scrutinize and comprehend
code snippets. Thus, allowing the model to utilize
its knowledge representation and pattern
recognition capacities to detect potential bugs in
new code, relying on its training data.

The review also discovered that the efficacy of
ChatGPT in programming bug prediction is
contingent on the quality of the training data and
system design. If the training data encompasses a
comprehensive array of code snippets and bugs,
the model can cultivate a robust understanding of
the interplay between code and bugs. This, in
turn, results in precise predictions and aids in
early bug identification during the development
process(Hoq et al., 2023).

3.3 ChatGPT as Debugging Aid

Findings of the study discovered that ChatGPT
can assist in providing suggestions and
corrections to codeby understanding the
connections between code and bugs. This can
streamline the debugging process and lessen the
time and effort needed to locate and rectify bugs.
It can also aid in debugging programming codes
through its natural language processing (NLP)
abilities, knowledge representation, and pattern
recognition skills. This result is in agreement with
the findings of Surameery and Shakor (2023) who
argued that once ChatGPT is trained, the model
can offer suggestions and corrections to code by
comprehending the relationships between code
and bugs. The authors stressed that if a bug exists
in the code, ChatGPT can propose a correction
based on its training data. These suggestions may
be drawn from its familiarity with programming
languages, typical bug patterns, and software
development best practices. Thus,the
effectiveness of employing ChatGPT for
debugging hinges on factors such as the quality of
the training data, system design, and the specific
programming bugs targeted. Furthermore, the
review found that the utilization of ChatGPT for
debugging assistance is still an emerging field of
study, requiring further investigation to fully
understand its capabilities and limitations.

3.3 ChatGPT as Bug Predictor

Concerning bugs prediction, the review results
revealed that ChatGPT has the capability to
anticipate the likelihood of bugs in fresh code,
drawing on its comprehension of the connections

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

41

between code and bugs. This proves valuable in
spotting bugs early in the development phase,
preventing them from becoming more challenging
and costly to rectify. This result is supported by
the findings of Chen et al. (2024) who stressed
that regarding bug prediction, ChatGPT can
harness its skill to scrutinize and comprehend
code snippets. Thus, allowing the model to utilize
its knowledge representation and pattern
recognition capacities to detect potential bugs in
new code, relying on its training data.

The review also discovered that the efficacy of
ChatGPT in programming bug prediction is
contingent on the quality of the training data and
system design. If the training data encompasses a
comprehensive array of code snippets and bugs,
the model can cultivate a robust understanding of
the interplay between code and bugs. This, in
turn, results in precise predictions and aids in
early bug identification during the development
process (Hoq et al., 2023).

4. Conclusion

In conclusion, ChatGPT can contribute to
resolving programming bugs by offering
debugging assistance, predicting bugs, and
explaining their causes. Its capacity to analyze
and comprehend code snippets, combined with its
knowledge representation and natural language
generation capabilities, renders it suitable for
these tasks. However, it's important to note that
while ChatGPT can be helpful in addressing
programming bugs, it's not flawless. Also, the
accuracy of its outcomes relies on the quality of
the training data and the system's design.
Additionally, it's essential to employ other
debugging tools and methods to verify ChatGPT
predictions and explanations, and to ensure bug-
free code. Thus, ChatGPT should be viewed as
one component of a comprehensive debugging
toolkit, that can be used alongside other tools and
techniques to achieve optimal results. By
leveraging the strengths of ChatGPT alongside
those of other debugging tools, developers can

gain a deeper understanding of their code and
effectively identify and rectify bugs. The
utilization of ChatGPT for addressing
programming bugs shows promise, yet further
research is required to fully assess its capabilities
and limitations.

References

Benton, S., Li, X., Lou, Y., & Zhang, L. (2021).
Evaluating and improving unified
debugging. IEEE Transactions on
Software Engineering, 48(11), 4692-4716.

Bharadwaj, R., & Parker, I. (2023, June). Double-
edged sword of LLMs: mitigating security
risks of AI-generated code. In Disruptive
Technologies in Information Sciences VII
(Vol. 12542, pp. 141-146). SPIE.

Biswas, S. (2023). Role of ChatGPT in Computer
Programming.: ChatGPT in Computer
Programming. Mesopotamian Journal of
Computer Science, 2023, 8-16.

Busch, D., Nolte, G., Bainczyk, A., & Steffen, B.
(2023, October). ChatGPT in the loop: a
natural language extension for domain-
specific modeling languages. In
International Conference on Bridging the
Gap between AI and Reality (pp. 375-
390). Cham: Springer Nature Switzerland.

Cao, J., Li, M., Wen, M., & Cheung, S.-c. (2023).
A study on prompt design, advantages and
limitations of chatgpt for deep learning
program repair. arXiv preprint
arXiv:2304.08191.

Chen, M., Li, Y., & Xu, Q. (2024). HiBug: On
Human-Interpretable Model Debug.
Advances in Neural Information
Processing Systems, 36.

Dakhel, A. M., Majdinasab, V., Nikanjam, A.,
Khomh, F., Desmarais, M. C., & Jiang, Z.
M. J. (2023). Github copilot ai pair
programmer: Asset or liability? Journal of
Systems and Software, 203, 111734.

Das, J. K., Mondal, S., & Roy, C. K. (2024).
Investigating the Utility of ChatGPT in the
Issue Tracking System: An Exploratory
Study. arXiv preprint arXiv:2402.03735.

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

42

DeLiema, D., Kwon, Y. A., Chisholm, A.,
Williams, I., Dahn, M., Flood, V. J.,
Abrahamson, D., & Steen, F. F. (2023). A
multi-dimensional framework for
documenting students’ heterogeneous
experiences with programming bugs.
Cognition and Instruction, 41(2), 158-200.

Do, L. N. Q., Krüger, S., Hill, P., Ali, K., &
Bodden, E. (2018). Debugging static
analysis. IEEE Transactions on Software
Engineering, 46(7), 697-709.

Ghosh, D., & Singh, J. (2020). A systematic
review on program debugging techniques.
Smart Computing Paradigms: New
Progresses and Challenges: Proceedings
of ICACNI 2018, Volume 2, 193-199.

Haque, M. A., & Li, S. (2023). The Potential Use
of ChatGPT for Debugging and Bug
Fixing. EAI Endorsed Transactions on AI
and Robotics, 2(1), e4-e4.

Hoq, M., Shi, Y., Leinonen, J., Babalola, D.,
Lynch, C., & Akram, B. (2023). Detecting
chatgpt-generated code in a cs1 course. In
Workshop on empowering education with
llms-the next-gen interface and content
generation. 2(1), 221-238.

Jesse, K., Ahmed, T., Devanbu, P. T., & Morgan,
E. (2023). Large Language Models and
Simple, Stupid Bugs. arXiv preprint
arXiv:2303.11455.

Kang, S., Yoon, J., & Yoo, S. (2023, May). Large
language models are few-shot testers:
Exploring llm-based general bug
reproduction. In 2023 IEEE/ACM 45th
International Conference on Software
Engineering (ICSE), (pp. 2312-2323).
IEEE.

Lau, S., & Guo, P. (2023, August). From" Ban it
till we understand it" to" Resistance is
futile": How university programming
instructors plan to adapt as more students
use AI code generation and explanation
tools such as ChatGPT and GitHub
Copilot. In Proceedings of the 2023 ACM
Conference on International Computing
Education Research-Volume 1 (pp. 106-
121).

Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2024).
Is your code generated by chatgpt really
correct? rigorous evaluation of large
language models for code generation.
Advances in Neural Information
Processing Systems, 36.

Liu, Y., Le-Cong, T., Widyasari, R.,
Tantithamthavorn, C., Li, L., Le, X.-B. D.,
& Lo, D. (2023). Refining ChatGPT-
generated code: Characterizing and
mitigating code quality issues. ACM
Transactions on Software Engineering
and Methodology1(4), 211-226.

MacNeil, S., Denny, P., Tran, A., Leinonen, J.,
Bernstein, S., Hellas, A., ... & Kim, J.
(2024, January). Decoding Logic Errors:
A Comparative Study on Bug Detection
by Students and Large Language Models.
In Proceedings of the 26th Australasian
Computing Education Conference (pp. 11-
18).

Meyer, J. G., Urbanowicz, R. J., Martin, P. C.,
O’Connor, K., Li, R., Peng, P.-C., Bright,
T. J., Tatonetti, N., Won, K. J., &
Gonzalez-Hernandez, G. (2023). ChatGPT
and large language models in academia:
opportunities and challenges. BioData
Mining, 16(1), 20.

Modi, C., Patel, D., Borisaniya, B., Patel, H.,
Patel, A., & Rajarajan, M. (2013). A
survey of intrusion detection techniques in
cloud. Journal of network and computer
applications, 36(1), 42-57.

Morovati, M. M., Nikanjam, A., Khomh, F., &
Jiang, Z. M. (2023). Bugs in machine
learning-based systems: a faultload
benchmark. Empirical Software
Engineering, 28(3), 62.

Nagwani, N. K., & Suri, J. S. (2023). An artificial
intelligence framework on software bug
triaging, technological evolution, and
future challenges: A review. International
Journal of Information Management Data
Insights, 3(1), 100153.

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

43

Nathalia, N., Paulo, A., & Donald, C. (2023,
September). Artificial intelligence vs.
software engineers: An empirical study on
performance and efficiency using chatgpt.
In Proceedings of the 33rd Annual
International Conference on Computer
Science and Software Engineering (pp.
24-33).

Nistor, A., Jiang, T., & Tan, L. (2013, May).
Discovering, reporting, and fixing
performance bugs. In 2013 10th working
conference on mining software
repositories (MSR) (pp. 237-246). IEEE.

Perry, N., Srivastava, M., Kumar, D., & Boneh,
D. (2023, November). Do users write
more insecure code with AI assistants?. In
Proceedings of the 2023 ACM SIGSAC
Conference on Computer and
Communications Security (pp. 2785-
2799).

Plein, L., Ouédraogo, W. C., Klein, J., &
Bissyandé, T. F. (2023). Automatic
generation of test cases based on bug
reports: a feasibility study with large
language models. arXiv preprint
arXiv:2310.06320.

Rahman, M. M., & Watanobe, Y. (2023).
ChatGPT for education and research:
Opportunities, threats, and strategies.
Applied Sciences, 13(9), 5783.

Reiche, M., & Leidner, J. L. (2023, September).
Bridging the programming skill gap with
ChatGPT: A machine learning project
with business students. In European
Conference on Artificial Intelligence (pp.
439-446). Cham: Springer Nature
Switzerland.

Sobania, D., Briesch, M., Hanna, C., & Petke, J.
(2023). An analysis of the automatic bug
fixing performance of chatgpt. arXiv
preprint arXiv:2301.08653.

Sun, W., Fang, C., You, Y., Miao, Y., Liu, Y., Li,
Y., Deng, G., Huang, S., Chen, Y., &
Zhang, Q. (2023). Automatic Code

Summarization via ChatGPT: How Far
Are We? arXiv preprint
arXiv:2305.12865.

Surameery, N. M. S., & Shakor, M. Y. (2023).
Use chat gpt to solve programming bugs.
International Journal of Information
Technology & Computer Engineering
(IJITC) ISSN: 2455-5290, 3(01), 17-22.

Tufano, M., Watson, C., Bavota, G., Penta, M. D.,
White, M., & Poshyvanyk, D. (2019). An
empirical study on learning bug-fixing
patches in the wild via neural machine
translation. ACM Transactions on
Software Engineering and Methodology
(TOSEM), 28(4), 1-29.

Xia, C. S., & Zhang, L. (2023). Keep the
Conversation Going: Fixing 162 out of
337 bugs for $0.42 each using ChatGPT.
arXiv preprint arXiv:2304.00385.

Xin, Q., & Reiss, S. P. (2017, October).
Leveraging syntax-related code for
automated program repair. In 2017 32nd
IEEE/ACM International Conference on
Automated Software Engineering (ASE)
(pp. 660-670). IEEE.

Xuan, J., Martinez, M., Demarco, F., Clement,
M., Marcote, S. L., Durieux, T., Le Berre,
D., & Monperrus, M. (2016). Nopol:
Automatic repair of conditional statement
bugs in java programs. IEEE Transactions
on Software Engineering, 43(1), 34-55.

Yilmaz, R., & Yilmaz, F. G. K. (2023).
Augmented intelligence in programming
learning: Examining student views on the
use of ChatGPT for programming
learning. Computers in Human Behavior:
Artificial Humans, 1(2), 100005.

Zhang, Q., Zhang, T., Zhai, J., Fang, C., Yu, B.,
Sun, W., & Chen, Z. (2023). A critical
review of large language model on
software engineering: An example from
chatgpt and automated program repair.
arXiv preprint arXiv:2310.08879.

Int. J. Adv. Multidiscip. Res. (2024). 11(3): 34-44

44

Zhong, H., & Su, Z. (2015, May). An empirical
study on real bug fixes. In 2015
IEEE/ACM 37th IEEE International
Conference on Software Engineering (Vol.
1, pp. 913-923). IEEE.

Access this Article in Online

Website:
www.ijarm.com

Subject:
Software
EngineeringQuick Response Code

DOI:10.22192/ijamr.2024.11.03.005

How to cite this article:
Hussaini Dan’azumi, Dr. Yakubu Bala Mohammed, and Mahmood Saidu Badara. (2024). Exploring
the Use of ChatGPT for Resolving Programming Bugs. Int. J. Adv. Multidiscip. Res. 11(3): 34-44.
DOI: http://dx.doi.org/10.22192/ijamr.2024.12.03.005

