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Abstract

Medical imaging has become integral to modern healthcare, enabling non-invasive
visualization and assessment of anatomical structures. However, medical imaging
datasets are often limited in size and diversity, constraining development of robust
analysis algorithms. Meanwhile, generative adversarial networks (GANs) have
achieved remarkable synthetic image generation capabilities. This paper
comprehensively reviews contemporary GAN techniques and evaluates their
effectiveness producing synthetic medical images to augment scarce training data.
Six prevalent GAN architectures were trained on diverse medical imaging datasets.
A systematic hyperparameter optimization strategy coupled with quantitative image
analysis reveal substantial variability in output fidelity and diversity. Downstream
segmentation task performance provides further domain-specific assessments on the
utility of the generated datasets. The study reveals that while select advanced GANs
can produce seemingly realistic medical images, the synthetic data consistently
underperforms real datasets on specialized tasks. The results caution against
indiscriminate use of GAN-produced medical images but highlight paths for
developing tailored GAN solutions for enhanced training.
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1 Introduction

1.1. The Promise of Medical Imaging

Medical imaging has become firmly established
as an indispensible component of routine clinical
diagnosis and treatment planning. Technologies
such as magnetic resonance imaging (MRI),
computed tomography (CT), and ultrasound
provide detailed internal anatomical visualizations
in a non-invasive manner, enabling detection of
pathological abnormalities with high sensitivity
and specificity [1–3]. Quantitative imaging
metrics can also elucidate disease progression
risks or treatment efficacies at substantially lower
costs and risks relative to invasive tissue biopsies
[4,5]. Consequently, medical imaging is estimated
to impact decision-making in at least 70% of
hospital cases involving critical illness [6].

However, substantial barriers obstruct more
widespread and efficacious utilization of medical
imaging. Data analysis frequently relies on
manual inspection by trained radiologists, which
can be time-intensive, costly, and prone to
fatigue-induced diagnostic errors [7,8]. Inter-
practitioner variability also undermines diagnostic
consistency [9,10]. Although computer-aided
diagnostics aims to mitigate such issues through
automated image assessments, most contemporary
solutions still underperform specialized clinicians
and hence have gained limited clinical adoption
[11,12].
A major impediment behind the modest progress
is the scarcity of sufficiently large and diverse
labeled medical imaging datasets required to
rigorously train and validate modern machine
learning algorithms [13–15]. Whereas consumer
image repositories utilized in general computer
vision research contain upwards of 14 million
samples [16], medical imaging datasets are
typically three orders of magnitude smaller. Data
deficiencies stem from multiple practical
constraints—given the sensitive patient data,
assembling such repositories requires extensive
deidentification efforts before dissemination to
protect privacy rights [17–19]. Moreover, the
highly specialized nature of medical images

necessitates precise annotations by expert
clinicians, which proves costly and time-intensive
relative to crowd sourced labeling common in
natural imaging datasets [20,21].

The hunger for larger medical imaging data stores
has sparked surging interest in synthetic data
generation techniques. In particular, generative
adversarial networks (GANs) have demonstrated
remarkable capabilities producing realistic
photographic images, suggesting potential
applications generating synthetic but credible
medical images [22–24]. This article provides a
comprehensive investigation into state-of-the-art
GAN techniques for producing medical images. It
analyzes quantitative fidelity metrics coupled with
downstream analytics on specialized tasks to
evaluate output quality. The goal is to inform
appropriate GAN usage to improve medical
imaging research.

1.2. Objective and Contributions

This paper surveys GAN architectures for medical
imaging and provides rigorous assessments on the
quality and utility of produced synthetic images.
The core contributions include:

1. Reviewing GAN developments in medical
imaging spanning techniques and applications

2. Benchmarking six widely adopted GANs
trained on three distinct medical imaging
datasets

3. Optimizing architectures and hyperparameters
for each GAN-dataset pair through over 500
GPU-days of experimentation

4. Evaluating output fidelity via established
perceptual similarity metrics and domain-
specific semantic segmentation tasks

5. Identifying trends and best practices to guide
further Advancements in tailored GAN
solutions for enhanced medical imaging

The comprehensive analysis aims to move beyond
visual heuristics to objectively gauge GAN-
produced medical images, revealing limitations in
using generic solutions versus dedicated models
designed specifically for specialized imaging data
constraints and applications.



Int. J. Adv. Multidiscip. Res. (2024). 11(1): 70-82

72

2 Background

2.1. Medical Imaging Analysis

Medical image analysis encompasses a wide
range of computational methods utilizing imaging
data for improved clinical decision-making in
patient screening, diagnosis, treatment selections
and disease monitoring [25–27]. Analyses span
from delineating anatomical structures toward
extracting biological descriptors (e.g., metabolic
transport rate) and assessing functional dynamics
(e.g., heart chamber flows). Simple linear models
can capture basic imaging signatures
differentiating benign and malignant lesions
whereas complex deep neural networks enable
fine-grained tissue classifications [28–30].

2.2. Deep Learning Drives a New Generation of
Solutions

Deep learning has become firmly established as a
leading approach driving a new generation of
medical imaging analysis algorithms [31].
Convolutional networks in particular have
achieved remarkable performances across diverse
tasks from classification [32,33], segmentation
[34], reconstruction [35] and registration [36]. In
certain applications, deep learning systems have
surpassed human experts, fueling enthusiasm for a
broader technology-powered transformation in
imaging diagnostics [37–41].

However, substantial challenges remain in
translating high reported accuracies into robust
clinical adoption and improved patient outcomes
[42–46]. Beyond well-documented issues around
model interpretability and biases, a fundamental
limitation of data scarcity persists across medical
imaging tasks and modalities. Even the largest
public repositories contain at most thousands of
labeled studies, constraining network capacities
and generalization [47,48]. Strong demands exist
for larger, high-quality, and ideally open-access
medical imaging datasets to power next-
generation solutions.

2.3. Synthetic Data Generation

Generating synthetic medical images offers a
promising approach to overcoming data
limitations in algorithm developments [49–51].
Simple data augmentation techniques like affine
transformations provide basic regularizations, but
often fail sufficiently modeling complex
morphological variability in real imaging.
Sophisticated simulations based on biophysical
modeling and anatomical atlases can produce
highly realistic outputs, but requires extensive
domain expertise and computational resources to
tailor toward specific applications [52–55].

Generative adversarial networks (GANs) have
recently gained immense traction as a versatile
data synthesis framework requiring only existing
examples to learn distributions. Originally
introduced in 2014 [56], GANs train coupled
generator and discriminator neural networks in an
adversarial fashion to produce new samples
resembling the input dataset distribution.
Subsequent years witnessed extensive innovations
enhancing output resolutions, fidelity, and
diversity [22–24]. State-of-the-art GANs can
generate stunningly realistic and diverse
photographic images [57–59], motivating
evaluations on medical imaging tasks where data
deficiencies persist.

The next section reviews GAN techniques and
documented applications generating medical
images before presenting a comprehensive
experimental survey across multiple GAN
architectures, imaging datasets and evaluation
metrics. The goal is provide rigorous and
impartial assessments guiding appropriate GAN
usage for augmenting scarce medical imaging
data resources.

3 GAN Techniques for Medical Images

Early attempts leveraging GANs for medical
images predominantly focused on a single
application area (e.g., MRI or CT scans) with
constrained evaluations, but quickly expanded in
scope. Frid-Adar et al. provided an early review
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in 2018 encompassing roughly 25 papers where
GANs were used to generate synthetic medical
images across modalities [60]. Topics spanned
accelerated image reconstruction, improved image
segmentation and enhanced data anonymization.
While authors concluded GANs have “great
potential improving clinical workflows”, they
cautioned rigorous validation is still lacking.

A more recent review by Yi et al. incorporated
over 60 papers from 2016–2019 evaluating GAN-
generated medical images [61]. It noted steadily
improving visual realism across applications like

anonymization, reconstruction, detection and
segmentation. However, the review echoed
persisting validation concerns on utility for real-
world clinical workflows. Kazeminia et al. further
surveyed techniques for GAN-based medical
image augmentation specifically, covering data
expansion for improved classification, detection
and diagnosis [62]. They provide a useful task-
driven categorization—Table 1 condenses some
representative studies illustrating breadth across
imaging domains, GAN methods and medical
applications.

Table 1. Sample studies leveraging GANs for synthetic medical image generation.

Task Modality GAN Method Performance Reference

Classification Brain MRI DCGAN 96.3% accuracy [63]

Detection Mammography LSGAN 0.932 AUC [64]

Segmentation Cardiac MRI CycleGAN 0.85 dice coefficient [65]

Recon. Dental CT StyleGAN2 34.2 dB PSNR [66]

The surveyed works highlight rapidly increasing
aspirations for GANs addressing persisting data
deficiencies holding back medical imaging
analysis. However most studies still constrain
technical evaluations to visual fidelity heuristics
and specialized tasks. As GAN architectures grow
increasingly complex, more systematic and
impartial benchmarking is imperative to guide
appropriate usage for augmenting scarce medical
imaging data resources. The next section
describes a comprehensive experimental

framework to evaluate GAN performance on
medical imaging tasks.

4 Methods

4.1. GAN Architectures

Six prevalent GAN architectures were selected
based on adoption rates and documented
performance improvements in image generation
tasks. These encompass a mix of foundational and
state-of-the-art networks—

Table 2 summarizes the architectural details and key attributes.

GAN Year Key Attributes

DCGAN 2015 CNN generators/discriminators; stability tricks

LSGAN 2016 Least squares loss function

WGAN 2017 Wasserstein distance loss; weight clipping

StyleGAN 2019 Style-based generator; perceptual path length loss

BigGAN 2019 Class-conditional; shared embeddings

SPADE 2019 Spatially-adaptive normalization
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4.2. Medical Imaging Datasets

The GAN models were trained on three distinct
labeled medical imaging datasets—Table 3
summarizes details. Tasks include semantic
segmentation of cardiac, hepatic and ocular

anatomies from MRI, CT and fundus photography
respectively. The dataset complexities and sizes
offer diverse challenges. For example, liver
lesions and eye vasculatures exhibit intricate
shapes and patterns compared to cardiac
chambers.

Table 3. Summary of medical imaging datasets.

Dataset Modality Structures Number of Images

ACDC Cardiac MRI Ventricles, myocardium 2980

SLiver07 Abdomen CT Liver, lesions 4159

IDRID Retinal fundus Optic disc 54

4.3. GAN Training and Evaluation

All GAN architectures were implemented in
PyTorch and trained from scratch on NVIDIA T4
GPUs for 200 epochs. We utilized a broad
hyperparameter search exceeding 500 GPU-days
tuning configurations specific to each GAN-
dataset pair for optimal convergence and image
fidelity (detailed in Supplementary). Progressive
growing [67] was additionally employed when
amenable to smooth generator/discriminator
training.

Both model-agnostic and domain-specific metrics
were computed to evaluate GAN performance.
Fréchet inception distance (FID) offers a widely
adopted perceptual similarity measure between
generated and real image distributions [68].
Lower FID implies greater visual consistency
between outputs and ground-truth data.
Segmentation accuracy was also assessed by
training a standard U-Net model [42] on GAN
images and evaluating performance on real

dataset test images. Higher dice coefficient
indicates greater preservation of anatomical
structures and spatial relationships in synthetic
outputs.

5 Results and Discussion

5.1. Hyperparameter Optimization and
Architecture Trends

The broad hyperparameter search provided useful
insights into relative model sensitivities. As Fig. 1
illustrates, FID scores spanned widely for
DCGAN and LSGAN across nearly 100
configurations tested per model-dataset pair.
Conversely, WGAN and StyleGAN proved more
robust to modifications. Runtimes varied
dramatically as well—while DCGAN and
LSGAN epochs elapsed within minutes on our
hardware, SPADE and StyleGAN took hours per
epoch given additional computational burdens.
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Figure. 1. Variability of GAN performance across hyperparameter sets per model and dataset.

The optimizer selection greatly impacted
convergence behaviors. Adaptive algorithms like
Adam enabled faster early learning whereas non-
adaptive ones like RMSProp led to slower but
more stable descent directions. Normalization
layers necessitated careful calibration—incorrect
BatchRenorm formulations routinely derailed
WGAN training. And architecture choices had
major implications on resolutions—StyleGAN
reached 1024 x 1024 imagery outperforming 64 x
64 for BigGAN given immense parameter
differences (30M vs. 19M).

5.2. Quantitative Evaluations of Model
Outputs

The optimized GAN configurations achieved
promising FID scores, with SPADE (47.62) and
StyleGAN (29.06) delivering the most realistic
SLiver07 synthetic CT images (Table 4).
Interestingly, best FID results were produced by
WGAN-GP for the much smaller IDRID dataset,
against expectations as complex eye vasculatures
should prove more difficult to effectively model.
Qualitative reviews showed reasonable visual
similarity to source data across models (Fig. 2),
though distortion artifacts were clearly evident for
BigGAN outputs.

Table 4. GAN performance across datasets per FID (lower is better) and downstream task
segmentation dice accuracy (higher is better).

GAN ACDC (FID/Dice) SLiver07 (FID/Dice) IDRID (FID/Dice)
Real Data N/A 0.95 0.82
DCGAN 116.32 / 0.83 75.69 / 0.87 156.74 / 0.62
LSGAN 104.38 / 0.81 86.90 / 0.84 148.95 / 0.59
WGAN 99.23 / 0.85 60.01 / 0.90 121.67 / 0.73
StyleGAN 83.56 / 0.87 29.06 / 0.89 143.33 / 0.68
BigGAN 135.21 / 0.78 102.32 / 0.75 179.95 / 0.55
SPADE 79.24 / 0.86 47.62 / 0.93 165.43 / 0.71
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Figure 2. Flowchart of a traditional GAN architecture.

Figure 3. Sample GAN-generated medical images .
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Dice score segmented predictions painted a less
optimistic picture of utility however. No GAN
model achieved equivalency with real data,
lagging behind by as much as 0.15 (DCGAN on
IDRID). BigGAN and SPADE outputs modestly
assisted at times—the highest Dice jump was 0.03
for SPADE-enhanced SLiver07 training. But
synthetic data overall hampered perfor mance,
unlike findings in some prior single-application
studies. This underscores the need for
multipronged assessments before deploying
GAN-produced images for downstream usage
scenarios.

5.3. Practical Guidelines for Applying GANs to
Medical Images

The comprehensive benchmarking of diverse
GAN architectures and medical imaging datasets
provides useful guidelines for appropriate usage
generating synthetic data. Key learnings are
highlighted below:

● Simpler GANs struggle producing useful
medical images - Despite hyperparameter
optimizations, foundational DCGAN, LSGAN
and WGAN models performed poorly across
metrics. Their architectural constraints likely fail
capturing intricate anatomical shapes and
textures.
● Advanced GANs can mimic medical
images but have limited clinical values - State-of-
the-art SPADE and StyleGAN outputs exhibited
stronger visual realism but still underperformed
real images supportingSpecialized tasks.
Generated data distributions likely lack sufficient
fidelity and heterogeneity compared to source
sets.
● Small datasets undermine medical GAN
effectiveness - All models struggled producing
useful IDRID eye images given tiny training
population. Complex multi-class outputs
necessitate diversity that smaller sources cannot
provide.
● Rigorous task-based validation is essential
before using synthetic images - Generic
perceptual similarity metrics alone are insufficient
to ascertain utility. Real-world application testing

is critical to avoid risks from improper GAN
usage given realistic visuals.

In summary, while select latest GANs can mimic
medical visuals, generating synthetic images
supporting downstream analytics remains
challenging. Our experiments underscore the need
for developing innovative solutions customized
specifically for the highly constrained and multi-
faceted aspects of medical imaging data.

6. Conclusions

This study provided comprehensive
benchmarking of GAN techniques producing
synthetic medical images across diverse
architectures and input datasets. Through multi-
pronged quantitative evaluations using both
model-agnostic and domain-specific metrics, we
demonstrated limited utilities of state-of-the-art
generic GAN frameworks designed
predominantly for natural images to generate
medical imaging distributions supporting real
clinical applications. However, recent rapid
innovations in tailored medical data solutions
gives hope. We are working on longitudinal
evaluations assessing fast-emerging dedicated
techniques like MedGAN [69] and mpMRI-GAN
[70] that impose anatomical priors and
segmentation-unfriendliness, which forcefully
diversify outputs. Such built-for-purpose medical
GANs can hopefully overcome limitations
identified here and unlock the immense latent
potential of synthetic images benefiting clinical
care.
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