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Abstract

Plants are subjected to a number of abiotic stresses in the field, many of which are
detrimental to plant development and output. Drought is one of the most
detrimental environmental conditions for crop cultivation. Wheat, a major crop is
severely affected by drought stress. Wheat production declines due to drought are
likely to have significant losses from all other factors. There are big consequences
of drought stress on wheat's physiological, biochemical, and morphological
properties, as well as the effects on growth, water relations, and photosynthesis.
Drought stress causes changes in leaf size, stem length, and root multiplication, as
well as an imbalance in plant-water relationships and a decrease in water efficiency.
Drought stress causes alterations in the wheat plant, which are being investigated
through physiological investigations. One of the most effective strategies to make
wheat plants drought tolerant is to boost their antioxidant defense system to
minimise oxidative stress. Plant biologists are developing novel techniques to
increase the antioxidant defense system in order to mitigate the impacts of drought-
induced plant damage. Drought tolerance in plants is conferred via a number of
genes and their overexpression. Recent advances in wheat genomic, transcriptomic,
proteomic, and metabolomic research under varying levels of drought give critical
information for generating drought-tolerant wheat cultivars. This overview aims to
summarise and update understanding on drought stress's impacts on wheat and
tolerance mechanisms, as well as the omics approach to wheat plant drought stress
adaptation.
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1. Introduction

Wheat (Triticum aestivum) is the world's most
frequently farmed food crop, and it is endangered
by climate change in the future (Pequeno et al.,
2021). By mid-century, climate change is
expected to reduce world wheat production by
1.9% (Pequeno et al., 2021). The poor nations in
tropical regions are expected to bear the brunt of
the negative consequences. African countries'
productivity are expected to reduce 15% by 2050,
while yields in Southern Asia are expected to fall
16% (Pequeno et al., 2021). Plants are subjected
to a variety of abiotic stresses in the field, all of
which are detrimental to plant growth and
development. Because of the extreme and rapid
worldwide climatic changes, the simultaneous
occurrence of abiotic stress, particularly drought
stress in plants, might alter the morphological,
physiological, and molecular responses in plants
(Hussain et al., 2018). As a result of the drought,
maize, peanut, wheat, sunflower, sugarcane, and
cotton yields and yield components have all
decreased significantly (Furlan et al., 2012; Tahir
et al., 2002; Barnabas et al., 2008; Vasantha et
al., 2005; Kamara et al., 2003).

Wheat production has always been subject to
several constraints, resulting in the formation of
biotic and abiotic limitations, among them,
drought is a major concern. Due to global climate
change, drought stress is becoming increasingly
severe and frequent in the Indo-Gangetic
floodplain, particularly during the winter wheat
growing season (Shekhar and Paul, 2012).

Drought stress is characterised by a shortage of
water that results in morphological, biochemical,
physiological, and molecular changes (Sallam et
al., 2019).Photosynthesis, chlorophyll production,
nutrient metabolism, ion absorption and
translocation, respiration, and carbohydrates
metabolism are all affected by drought stress in
plants (Li et al., 2011; Farooq et al., 2009; Oyiga
et al., 2020). The immediate result is decreased
organ output, greater flower abortion, and a
shorter grain filling time, all of which have an
impact on crop yield (Koua et al., 2021).Drought
stress, along with high temperatures during the

reproductive stage (ultimate development phase),
is a major contributor to low wheat production in
the tropics and subtropics (Sattar et al., 2020).

Wheat must adapt to drought conditions in order
to survive, and numerous resistant genotypes have
been developed to assist preserve soluble sugars,
proline content, amino acids, chlorophyll content,
as well as enzymatic and nonenzymatic
antioxidant activities (Abid et al., 2016).Wheat
has enhanced its drought tolerance mechanisms;
nevertheless, these mechanisms differ and are
dependent on the crop kinds and cultivars (Tefera
et al., 2021). Durum wheat was discovered to be
able to survive water stress better than bread
wheat (Tefera et al., 2021).Drought stress reduced
the grain filling period by 15–24% and grain
production by 11–34% (Islam et al., 2021).When
compared to irrigated circumstances, yield
decreased by 3.09t ha-1 (-46.8%) under semiarid
conditions in winter wheat (Neha et al., 2021).
Yield and kernel per meter square decreased by
68.71% and 66.05% respectively (Koua et al.,
2021). Moreover, plant height, the number of
spikelets spike-1, spike length, chlorophyll
content, and relative water were all reduced by
26%, 23%, 9%, 11%, and 16%, respectively
under drought stress (Tefera et al., 2021). Thus, to
maintain food security under the changing
climatic conditions, the development of stress
tolerance in wheat might be a promising
approach.

An overview of omics technologies, such as
transcriptomics, metabolomics, and proteomics, is
currently used to gain an in-depth, precise, and
systemic understanding of key biological and
cellular pathways engaged by agricultural plants
during stress (Zargar et al., 2022). Mutant
libraries, cDNAs, expression profiles, sequence
data sets, and quantitative trait loci (QTLs) are all
valuable resources in structural and genomics
research (Jiang et al., 2011). Cloning of many
genes and discovered QTLs were significant for
drought tolerance (Vikram et al., 2012). To
address the complicated nature of drought stress
and mitigating mechanisms for tolerating drought
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stress, a large number of QTLs were found
(Fleury et al., 2010). In addition, numerous QTLs
responsible for increased grain output and other
secondary traits that allow rainfed uplands and
lowlands to tolerate drought stress have been
found (Bernier et al., 2007; Venuprasad et al.,
2009). Under drought conditions, different QTL
performance has been seen in upland and lowland
habitats. Under drought conditions, different QTL
performance has been seen in upland and lowland
habitats. Finally, the best QTLs for the
ecosystems, genetic background, and
environmental conditions are chosen.
Furthermore, marker assisted back crossing
(MABC) has been successfully used in crop
plants to generate high yielding cultivars. MABC
has been used to boost the yield of crop varieties
in Thailand's north-eastern provinces (Kanjoo et
al., 2012). Applications of molecular breeding
techniques such as marker-assisted selection
(MAS), SNP marker applications, and genome
wide assisted selection (GWAS) are expected to
pave the way for understanding the molecular
mechanisms underlying crop plant resilience to a
wide range of environmental challenges, such as
drought stress, in the near future.

1.1. Consequences of drought on wheat

Drought causes plants to undergo a number of
physiological and molecular changes, the majority
of which aid in their adaptation to the harsh
environment. Drought stress has both direct and
indirect effects on plant metabolism. Drought-
induced stress changes the morpho-anatomical,
physiological, and biochemical composition of
plants, reducing transpiration and improving the
efficiency with which the plants use the water
they have stored. Leaf water deficits come from
constant water loss through transpiration. Drought
stress, on the other hand, has a variety of effects,
ranging from lesions to confusion (Bijalwan et al.,
2022). Some consequences are discussed below-

1.1.1. Morphological effect

As a response to drought stress, wheat undergoes
morphological changes such as reduced plant size,
early maturity, decreased leaf area, reduced yield,
limited leaf extension, small leaf size, reduced
number of tillers, reduced leaf longevity, reduced
total shoot length, decreased plant height,
increased leaf rolling, and reduced plant biomass
(Rijal et al., 2021). Drought stress has a
substantial impact on seed germination, seedling
development, dry matter partitioning, root growth,
root depth, and extension (Lonbani and Arzani,
2011). The root is the first organ to be influenced
by drought stress (Shimazaki et al., 2005). Under
water stress, the root grows in order to find water,
while the growth of the shooting component is
stunted (Ahmad et al., 2018). The fall in biomass
(Wang et al., 2005), grain number (Dolferus et
al., 2011), is mostly caused by terminal drought,
which results in a large reduction in wheat output.
One of the most visible symptoms of leaf
senescence is chlorosis, which causes a reduction
in photosynthesis (Ali et al., 2020). Wheat grown
in extreme drought circumstances can bring the
entire plant to senescence, but it also improves the
mobilisation of stored carbohydrates from the
stem and leaves to forming grains during
parenthesis, so compensating the yield loss
incurred by senescence during drought stress
(Nawaz et al., 2013; Farooq et al., 2014).

Drought stress requires specific physiological
changes in the plant in order to mitigate the
effects of drought stress (Vinocur and Altman,
2005). Adaptation mechanisms in wheat for
dealing with drought stress include osmotic root
adjustment, greater root penetration into the soil,
increased root density, and increased root to shoot
ratio (Ali et al., 2020). The relevance of root
angle in irrigated settings and roots per shoot in
drought situations for boosting grain production
might be crucial for designing drought-tolerant
cultivars was concluded by Neha et al., (2021).
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Canopy stay green traits aided in the selection of
drought-tolerant genotypes, since they may confer
longer photosynthesis, nutrient, and water
absorption under stress (Lopes and Reynolds,
2012). The use of an RGB-based vegetation index
to characterize canopy green area dynamics might
reduce selection time and improve precision
(Neha et al., 2021).

1.1.2. Physiological effect

Drought stress has been linked to a wide range of
physiological responses. Drought stress on wheat
crops is mitigated by a variety of physiological
characteristics (Rijal et al., 2021). The availability
of water has a direct link with the functioning of
many physiological processes in plants. These
physiological processes are disrupted when water
availability is reduced, and plants are unable to
create appropriate amounts of dry matter (Barbeta
et al., 2015). Water deficit causes a decrease in
water status during crop growth, soil water
potential, and plant osmotic potential for water
and nutrient absorption, which reduces leaf turgor
pressure, causing plant metabolic processes to be
disrupted (Mehraban and Miri, 2017). Drought
significantly impacts water relations, nutrient
absorption, growth, and yield in wheat at later
stages (6 weeks after emergence) than at earlier
stages (3 weeks after seedling emergence)
(Nawaz et al., 2014). In comparison to their
individual impacts, combined drought and heat
shocks had the most devastating consequences on
plant relative water relations except turgor
potential (Sattar et al., 2020). Plants restrict their
stomata (perhaps via ABA signalling) when the
volume of available water decreases, reducing
CO2 input. CO2 reduction not only reduces
carboxylation but also directs additional electrons
to generate reactive O2 species (Ahmad et al.,
2018). Closing of stomata, a reduction in
photosynthetic activity, the onset of oxidative
stress, changes in cell wall integrity, and the
formation of toxic compounds that lead to plant
death are some of the physiological changes
(Alghabari and Ihsan, 2018). Different abiotic
stressors attack biological membranes first and
foremost. The durability of maintenance

membranes under water stress is thought to be a
key component of drought resistance in plants.
Drought stress damages membrane integrity
(Almeselmani et al., 2012). Drought stress also
affects the electron transport chain, resulting in
the generation of reactive oxygen species (ROS)
that are detrimental to plant cells and organelles
such as mitochondria, chloroplasts, and
peroxisomes (Farooqi et al., 2020).Under drought
conditions, RuBisCO (ribulose-1, 5-bisphosphate
carboxylase/oxygenase) enzyme activity is
inhibited, resulting in a decrease in photosynthetic
amount and the generation of ATP (Dulai et al.,
2006).

Plants must adapt to drought conditions in order
to survive, and several tolerant genotypes have
been developed to assist preserve soluble sugars,
proline content, amino acids, chlorophyll content,
enzymatic and non-enzymatic antioxidant
activities (Abid et al., 2016). When compared to
leaf water potential, relative water content (RWC)
is an effective predictor of water status in drought
conditions (Lugojan and Ciulca, 2011), as it
decreases when leaf exposed to drought (Nayyar
& Gupta, 2006) and it has also been used to find
drought-tolerant cultivars (Bayoumi et al., 2008).
These several forms of plant drought tolerance
mechanisms aid in the understanding of the
physiological response that aids in the
maintenance of growth and productivity during
times of stress (Rijal et al., 2021). Similarly, these
qualities are important in breeding projects aimed
at developing drought-tolerant cultivars that can
thrive in areas where water is scarce.

1.1.3. Biochemical effect

Reduced efficiency of Rubisco, photochemical,
accumulation of stress metabolites (glybet,
glutathione, and polyamines), antioxidant
enzymes [peroxidase (POD), superoxide
dismutase (SOD), ascorbate peroxidase (APX),
catalase (CAT)], and reduced ROS accumulation
are some of the biochemical effects in plants due
to water stress (Nezhadahmadi et al., 2013).
Drought stress has a deleterious impact on total
soluble sugar (TSS), total carbohydrate (TC), and
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enzyme activity in wheat (Hammad and Ali,
2014). The culm reserves, or water-soluble
carbohydrates (WSCs), contributed less to the
grains as a result of the stress (Islam et al., 2021).
When the generation and build-up of ROS
increases, it affects cellular processes such as
protein degradation, enzyme inhibition, oxidative
damage to DNA and RNA, and membrane lipid
peroxidation, all of which lead to cell death
(Ishikawa et al., 2010; Huseynova, 2012).

Wheat plants mostly in the heading stage,
accumulate proline content to a greater extent
than any other osmoregulators due to a shortage
of water (Maralian et al., 2010). Tefera et al.,
(2021) stated that wheat in response to drought
increases proline and total soluble sugar by 28%
and 6% respectively and biochemical parameters
need to be considered as a better option for the
selection process under drought stress. Todorova
et al., (2021) conclude that Serrate (selective
herbicide) affects the biochemical reactions of
drought-stressed wheat seedlings and after the
combined herbicide+drought treatment, stress
indicators, the enzymatic and non-enzymatic
antioxidant defense were also elevated throughout
the stress phase.

As the production of ROS increases in stress
(Farooqi et al., 2020), enzymatic and non-
enzymatic systems get activated to detoxify the
toxic level of ROS (Caverzan et al., 2016). This
reaction is also influenced by other aspects such
as tissue type, stress duration, and intensity, and
developmental stage, demonstrating the intricacy
of the process of ROS formation and
detoxification, as well as the impact of ROS on
the antioxidant mechanism (Caverzan et al.,
2016). Hussain et al., (2021) remarked that the
increase in output was attributed to the wheat
genotype's improved drought tolerance, as ABA
(a form of abscisic acid) aids the plant in water-
saving because an increase in the concentration of
ABA near the guard cell causes the closer of
stomata (Sourour et al., 2017). Silicon application
(anthesis stage- foliar spray, tillering stage-
fertigation) enhances plant biochemical
characteristics, nutrient absorption, and growth

rate, all of which aid the plant in mitigating
drought-stressing impacts (Bukhari et al., 2021).
The latest findings by Gyugos et al., (2021) of
far-red light's adaptive adjustment of glutathione
and amino acid levels during drought, which can
be used as a foundation for spectrum-dependent
modification of crops' defensive metabolites
(glutathione, proline) to prevent stress-induced
damage.

2. Omics approaches for increasing
productivity of wheat under drought
stress

Omics, or the study of an organism's genes,
transcripts, proteins, and metabolites, decodes the
complete genome in order to get a better
knowledge of plant molecular reactions and
develop precise crop development tactics (Jain et
al., 2019). The key requirement for demonstrating
the exact link between genotype and phenotype is
the integration of crop functional genomics and
phenomics data (Yang et al., 2020). One of the
reasons for the limited contribution of genomics-
assisted selection-based production of drought-
tolerant wheat cultivars might be the polygenic
nature of drought tolerance and the huge genome
size of wheat (Mwadzingeni et al., 2016). Koobaz
et al., (2020) used metabolomics and proteomics
to investigate the mechanism behind wheat
desiccation tolerance, as well as the function of
several stress-responsive proteins and metabolites.
Figure 1 represents an overview of the integrated
multi-omics approach for crop improvement.
Combining multi-omics and systems biology to
construct a top-down (phenotype to genotype) and
bottom-up (genotype to phenotype) model for
crop breeding improvement under environmental
difficulties could be beneficial (Yang et al. 2021).
The drought signalling route in wheat is depicted
in Figure 2.
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Figure 1: Integrated multi-omics approaches

Figure 2: Drought signalling pathway in wheat.
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2.1. Genomics approach

Genomics focuses on the structure, function,
evolution, mapping, epigenomic, metagenomic,
and genome editing aspects of genes and genomes
(Muthamilarasan et al., 2019). To enhance
drought tolerance, several methods like
quantitative trait locus (QTL) mapping, marker
aided breeding, and introgression of a gene from a
wild gene pool have been used (Merchuk-Ovnat
et al., 2016; Mwadzingeni et al., 2016). Pour-
Aboughadareh et al., (2017) suggest that wild
cousins of wheat might be used to increase stress
tolerance. Khanna-Chopra et al., (2020)
discovered notable QTLs on chromosome 3B
regarding cell membrane stability as well as on
chromosome 2D for flag leaf influencing factors
(area, breadth, and length). A key yield QTL
(Qyld.csdh.7AL) was recently incorporated in
four elite Indian wheat lines to create drought-
tolerant genotypes with good yielding qualities
under stressed conditions (Gautam et al., 2020).
Zandipour et al., (2020), found a QTL hotspot for
nine key characters (grain number per spike, spike
length, spike weight, plant height, biological
yield, grain yield, stem weight, and thousand-
grain weight) on wheat chromosome 1B under
terminal drought stress. Table 1 shows all recently

developed QTLs and related traits for drought
tolerance.

Molecular markers have greatly aided us in
improving desired qualities, such as drought
tolerance, with more efficacy and dependability
(Budak et al., 2015). The development of
sequence-based simple sequence repeats (SSRs)
and single nucleotide polymorphisms (SNPs)
markers has been aided by recent advances in
DNA sequencing and genotyping techniques
(Pascual et al., 2020), mostly SNPs due to their
abundance in nature (Winfield et al., 2016). Hua
et al., (2019) found target genes in wheat that
might be used to increase drought resistance
through genetic engineering. By studying the
expression of wheat genes P5CS and P5CR
during drought stress, Karolina et al., (2019)
discovered that they play a significant role in
determining tolerance to water deficiencies.
According to Neha et al., (2021), TaCwi.4A
genetic marker for drought tolerance was highly
associated with grain yield in wheat under water
stress and also suggested it for use in future
breeding programs. Figure 3 provides a
percentage of QTLs with related trait and their
presence in chromosome responsible for drought
tolerance in wheat.

Figure 3: Graphical representation of percentage of drought responsible QTLs in chromosomes of wheat
according to the work of previous researchers (Gahlaut et al., 2017; Xu et al., 2017; Ayalew et al., 2018;
Condorelli et al., 2018; Fatima et al., 2018; Sukumaran et al., 2018; Dolferus et al., 2019; Liu et al., 2019;
Goel et al., 2019; Li et al., 2019; Touzy et al., 2019; Tura et al., 2020; Ballesta et al., 2020; Koua et al.,
2021).
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Table 1. Genes/Transgenes responsible for drought tolerance in wheat

S. No
Genes/Tran

sgenes
Source

Putative function/Improved
traits

Reference

1. ERF1-V Wheat

Induce biochemical and
molecular changes in transgenic

wheat plants during salt and
drought stress

(Xing et al.,
2017)

2. SeCspA E. coli
More grain weight, yield,

proline content, less reduction
in chlorophyll content

(Yu et al.,
2017)

3.
TaODORA

NT1
Wheat

Under salt and drought stress,
an R2R3-MYB gene increases

the expression of ROS and
stress-related genes in

transgenic tobacco

(Wei et al.,
2017)

4. TaFER-5B Wheat
Enhance temperature and

drought tolerance, improve
ROS and leaf iron content

(Zang et al.,
2017)

5.
TaDrSR1

and
TaDrSR2

Wheat
Wheat drought tolerance

proteins with differing levels of
abundance

(Wang et al.,
2018)

6. TaPEPKR2 Wheat
Enhance root length and

drought tolerance
(Zang et al.,

2018)

7. TaSHN1 Wheat
Enhance recovery from stress
and lowers leaf water loss and

stomatal density

(Bi et al.,
2018)

8. TaWRKY2 Wheat
Higher soluble sugar, proline,
chlorophyll and survival rate

(Gao et al.,
2018)

9. CIPK23 Wheat
Enhanced ABA sensitivity,

higher survival rate, increased
osmolyte, stomata closure

(Cui et al.,
2018)

10. TabZIP2 Wheat
More single seed weight, less

spikes and seed
(Luang et al.,

2018)

11. TaCML20 Wheat
In transgenic wheat, a CaM-like

gene boosts water-soluble
carbohydrate levels and yield

(Kalaipandian
et al., 2019)

12. TaH2B-7D Wheat

Knock-down wheat plants were
used to investigate its

involvement in drought
tolerance transmission

(Wang et al.,
2019)

13. TaCOMT Wheat
In transgenic Arabidopsis,

increases melatonin content and
enhances drought tolerance

(Yang et al.,
2019)

14. TaDr1 Wheat

A transcriptional repressor that
is co-expressed in wheat with

TaFT1 and TaVrn1 in response
to drought stress

(Zotova et al.,
2019)



Int. J. Adv. Multidiscip. Res. (2023). 10(1): 139-162

147

15. TaSIM Wheat

Reduces water loss and
improves soluble sugar, proline,

and stress-sensitive gene
expression in transgenic

Arabidopsis under drought
stress

(Yu et al.,
2019)

16. TdPIP2;1 Wheat
In transgenic wheat plants, an
aquaporin gene engaged in salt
and drought tolerance is found

(Ayadi et al.,
2019)

17. TaMYBsm3 Wheat

In transgenic Arabidopsis
plants, a MYB-CC transcription

factor increases DT by
upregulating the expression of
stress-related genes (P5CS1,

DREB2A, and RD29A)

(Li et al.,
2019)

18. OTS1 Arabidopsis
More RWC, photosynthesis,
and antioxidants , delayed

senescence

(Li et al.,
2019)

19. AtWRK30 Arabidopsis

Induces gas-exchange
properties, osmolytes

biosynthesis, antioxidant
system, and stress-responsive
gene expression in transgenic
wheat plants, as well as heat

and drought tolerance

(El-Esawi et
al., 2019)

20. TdSHN1 Wheat

In transgenic tobacco plants, a
transcription factor that

increases salt and drought
tolerance

(Djemal and
Khoudi, 2019)

21. SBPase Brachypodium
Fully driven GUS expression

promoted
(Alotaibi et
al., 2019)

22. HaHB4 Sunflower
More water use efficiency and

yield
(González et

al., 2019)

23. GmDREB1 Soybean
Drought tolerance in transgenic

wheat plants is improved.
(Zhou et al.,

2020)

2.2. Transcriptomics approach

Transcriptomics is concerned with the
transcriptome, which is the total collection of
RNA transcripts generated by an organism's
genome in a cell or tissue (Raza et al., 2021).
With more whole-genome transcriptomic studies
the genes linked to downstream signalling,
production of stress response molecules, are
undermined (Zang et al., 2020). The
transcriptome analysis based on microarray and
RNA sequencing (RNA-seq) has been used to

deconstruct the wheat drought tolerance (Liu et
al., 2015).

Drought-stressed wheat at the reproductive stage
was studied using RNA-seq, and 309 drought-
responsive differentially expressed genes (DEGs)
linked to photosynthetic activity, floral
development, and stomatal movement were
discovered (Ma et al., 2017). Liu et al., (2017)
investigated the transcriptome of wheat during the
early grain-filling stage of drought and discovered
566 DEGs related to signal transduction,
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metabolism, and transcription. They also looked
at the involvement of phenylalanine metabolism
and flavonoid production in wheat spikes under
drought tolerance. Plant development has been
found to be aided by the use of laser irradiation
under various abiotic stress situations and with the
use of RNA-seq based transcriptome analysis Qui
et al., (2017) explored He–Ne radiation’s role in
wheat drought tolerance and found that the
irradiation promoted 820 DEGs in wheat under
water stress. Transcriptome profiling was done in
roots of wheat under water stress using RNA-seq
based transcriptome analysis by Hu et al., (2018).
The discovery of 45139 DEGs, 13820
transcription factors, and 288 miRNAs by RNA-
seq of drought-stressed roots of tolerant
(NI543941) and sensitive (WL711) wheat
genotypes further highlighted the applicability of
RNA-seq data in the dissection of particular QTL
(Iquebal et al., 2019).

2.3. Proteomics approach

Proteomics is a technique for profiling the total
expressed protein in an organism and it is
separated into four parts: sequence, structural,
functional, and expression proteomics (Mosa et
al., 2017; Aizat and Hassan, 2018).The amino
acid sequences are determined using sequence
proteomics by High-Performance Liquid
Chromatography (HPLC; Twyman, 2013). The
structure of proteins is studied in structural
proteomics to better understand their possible
activities using computer-based modelling, and
experimental methods including crystallization,
nuclear magnetic resonance (NMR), X-ray
diffraction of protein crystals, and electron
microscopy (Woolfson, 2018).Functional
proteomics identifies a protein's activities, which
are then investigated using a variety of techniques
such as yeast-one or two hybrids and protein
microarray profiling (Lueong et al., 2014).

Wheat's different organs' proteomic responses to
drought stress have been extensively studied,
including seedling leaves and roots (Cheng et al.,
2015; Hao et al., 2015), glume and awn
development (Deng et al., 2019), flag leaves
(Deng et al., 2018; Zhu et al., 2020), and grain

development (Ge et al., 2012; Deng et al., 2018;
Duan et al., 2020). Subcellular proteomics has
recently been established to decode several
organelle proteins involved in abiotic stress
defense, such as those found in the plasma
membrane, endoplasmic reticulum, mitochondria,
and chloroplast (Zhang et al., 2021; Zhu et al.,
2021).

Drought stress had a negative impact on the Bahar
leaf proteome, resulting in a significant drop in
total protein content, mostly due to deficiencies in
photosynthetic proteins and enzymes associated
with sugar and nitrogen metabolism, as well as
the ability to detoxify toxic compounds, according
to a study conducted on two spring wheat
cultivars (Kavir, drought-tolerant; Bahar, drought-
susceptible). On the other hand, relatively little
protein alterations were seen in Kavir stressed
leaves (Michaletti et al., 2018).

Comparative proteomics to evaluate and analyse
the wheat types Chinese Spring and D. villosum (a
species of Triticeae) discovered a total of 883
distinct abundant proteins (DAPs) (Wang et al.,
2021). Many proteins associated in defense/stress
change radically between D. villosum and the
wheat variety Chinese Spring, including the Gα
subunit, zinc finger protein family, PR1, HSP
family, LEA protein, and serpin family (Wang et
al., 2021). This discovery has paved the way for
more research into the molecular mechanisms of
wheat resilience and quality, as well as the
development of wheat varieties based on wild
relatives of wheat (Wang et al., 2021).

In the cell nucleus subproteome of wheat growing
grains, using label-free quantitative proteomic
analysis Li et al., (2021) found 398 water-deficit
sensitive DAPs out of which 146 up-regulated
DAPs were mostly engaged in oxidation-
reduction and stress response, whereas 252 down-
regulated DAPs were mostly involved in
translation, oxidation-reduction, and cellular
amino metabolic pathway. The wheat grain
nuclear sub proteome’s metabolic route in
response to water shortage was hypothesised,
providing new knowledge from a subcellular
proteome level for understanding the molecular
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processes of plant drought stress response (Li
et al., 2021).

2.4. Metabolomics approach

Metabolomics is a powerful method for obtaining
detailed data on metabolite profiling and
metabolic network analysis (Kumar et al., 2021).
It also provides information on metabolites that
have been identified as well as those that have yet
to be identified (Kumar et al., 2021). Metabolite
profiling techniques have been frequently utilized
to analyse plant molecular responses to drought
stress and assess metabolite levels in a specific
metabolite class or pathway (Kusano et al., 2007).
Proteomics simply detects gene products, but
metabolomics may reveal how proteins are
expressed metabolically and uncover biochemical
processes that are critical for gene function
(Lindon and Nicholson, 2008). Genome
sequencing techniques like next-generation
sequencing (NGS) and metabolite measurement
through mass-spectrometry (MS) are used
collectively to generate crop-improvement
strategies (Pandey et al., 2016). In order to
correctly identify and evaluate metabolites,
accurate annotation and reporting of
metabolomics data are critical. Alseekh et al.,
(2021), recently published standards for
annotation and quantification of gas/liquid
chromatography-mass spectrometry (GC/LC-MS)
based metabolomics data reporting to maintain
transparency and avoid misinterpretation of
metabolite data.

Drought stress responses of spring wheat leaf
tissue are revealed by metabolomics and
proteomics, which provide a better framework for
understanding the mechanisms that drive plant
cell responses to drought stress and knowledge of
chemicals that can be exploited in crop
improvement programmes (Michaletti et al.,
2018). Drought stress had a significantly higher
negative impact on the distribution and
accumulation of metabolites in JD8 than in JD17,
according to a study conducted on shoots of two
wheat genotypes (JD17- drought tolerant, JD8-
drought sensitive), and GC-MS was
recommended as an effective approach for

understanding plant biochemistry under water
stress (Guo et al., 2018).

Using GC/MS, researchers discovered that lysine,
asparagine, methionine, serine, and glutamine are
the major metabolites involved in drought
resistance in wheat leaves (Yadav et al., 2019).
Beside this GC-MS analysis of wheat roots and
leaves under drought stress revealed that
tryptophan and valine, as well as other
metabolites such fumaric acid, malic acid, and
citric acid, are the primary metabolites connected
to drought tolerance (Kang et al., 2019). Guo et
al., (2020) examined the metabolome of drought
tolerant (HX10) and sensitive (YN211) wheat
genotypes using ultra-performance liquid
chromatography-mass spectrometry (UPLC-MS).
In response to drought stress, there was a
difference in the levels of 56 metabolites between
these genotypes. Future QTL or Genome-Wide
Association Studies (GWAS) research might
leverage this metabolome data to discover locus
(loci) or gene(s) linked with these metabolic traits
(s), and therefore offer gene(s) or trait-specific
marker(s) for crop improvement was further
remarked.

2.5. Ionomics approach

Ionomics is a method for studying the molecular
systems underlying critical mineral nutrient and
trace element composition in biological systems
through high-throughput elemental profiling
(Michaletti et al., 2018). Inorganic components of
cellular and organismal systems are also
represented by this term (Michaletti et al., 2018).
It has several uses in forward and reverse
genetics, mutant screening, ion absorption,
compartmentalization, transport, and exclusion
processes, and therefore aids in the understanding
of drought and other abiotic stress mechanisms in
plants (Shelden and Roessner, 2013). Integration
of ionomics with other omics, such as genomics
or metabolomics, might help researchers find
possible genes and networks that increase crop
resilience to physiological and environmental
stress (Colmsee et al., 2012; Satismruti et al.,
2013; Singh et al., 2013; Wu et al., 2013; Huang
and Salt, 2016; Guo et al., 2017).
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Ionomics investigations in wheat under drought
stress is yet to be published (Budak et al., 2015).
Ionomics is a relatively new functional genomics
approach with a small number of research
accessible, but spatial and technologically
advanced ion profiling will be critical in the
future to understand drought tolerance signalling
networks (Budak et al., 2015; Shah et al., 2018).

2.6, Phenomics approach

Phenomics is described as the collecting of high-
dimensional phenotypic data on an organism-wide
scale to characterise phenotypes (Houle et al.,
2010). Plant phenomics is a fast-growing subject
that includes anything from high-throughput field
phenotyping to cellular imaging (Kaur et al.,
2021). Field-based high-throughput phenotyping
(HTP) has received greater attention in the
previous decade, especially to forecast agronomic
and physiological features (Crain et al., 2018).
The new phenomics era has given scientists the
tools they need to decode the data encoded in
plant genomes (Finkel, 2009; Yang et al., 2020).
The capacity to collect comprehensive sets of
field data and the fast speed of plant phenotyping
based on phenomics has enhanced the selection
phenomena of possible elite advanced lines that
perform well under stress situations (Montes et
al., 2007).

The new phenomics era has given scientists the
tools they need to decode the data encoded in
plant genomes (Finkel, 2009; Yang et al., 2020).
Handheld infrared thermometers were used to
assess canopy temperature in a high-throughput
manner to avoid plot-to-plot fluctuation by Deery
et al., (2016) along with thermal imaging sensors
in wheat for water and heat stress. The ability of
several sensors to predict drought tolerance
capacities of genotypes using water stress indices
was tested by Becker et al., (2017) utilizing
passive and active hyperspectral reflectance
sensors in wheat under drought stress. The usage
of Unmanned Aerial Systems (UAS)-based HTP
as a technique for collecting high-spatiotemporal
data is quickly expanding (Haghighattalab et al.,
2016). Using an unmanned aerial vehicle (UAV)
imagery system in 248 elite durum wheat

Condorelli et al., (2018) measured leaf
chlorophyll content, leaf rolling, dry biomass,
Normalized Difference Vegetation Index (NDVI),
and QTLs for NDVI under water deficit
conditions. Bhandari et al., (2021) concluded that
the combination of UAS-based remote sensing,
agronomy, wheat breeding, and data analytics
might lead to the development of digital tools that
could be used to select genotypes for drought
resistance and increase wheat breeding
programmes' genetic gain.

3. Conclusion

Global climate change has resulted in the
emergence of complex stress combinations and
their effects on crop growth and production in
modern agriculture. Climate change is a
multifaceted issue with long-term consequences
in the form of many abiotic pressures. Among
them, water scarcity is receiving attention as
abiotic stress because of its negative impact on
plant growth and development, as well as a
considerable loss in plant yield and biomass,
resulting in worldwide food insecurity. Drought is
one of the primary issues for attaining the
potential yield since most of the worldwide wheat
production area is in arid and semi-arid regions. It
limits plant growth and development, which
delays fruiting and grain filling, resulting in
smaller and fewer wheat grains. Drought reduces
wheat yields by altering the balance between the
formation of ROS in plant cells, resulting in ROS
overproduction and oxidative stress. Drought-
induced ROS damage a wide range of
macromolecules, including proteins and nucleic
acids, causing plant death. It has an overall effect
on plant production by interfering with
physiological, metabolic, and biochemical
processes. Certain breeding approaches,
molecular and genomics views, with a specific
emphasis on the omics technology modification,
i.e., metabolomics, proteomics, genomics,
transcriptomics, glycomics, and phenomics
approaches, are of considerable use in improving
drought stress tolerance in plants. However, a
combination of advanced technologies and
technical improvements is required for a better
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understanding of drought tolerance mechanisms
and the development of drought tolerant wheat
plants.

To fully comprehend complex abiotic stress
tolerance features, more research is needed to
combine data from omics investigations. As a
result, investigations in genomics,
transcriptomics, proteomics, metabolomics, and,
particularly, phenomics, should focus more on the
response to abiotic stressors.
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