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Abstract

Kabul River Basin (KRB), one of Afghanistan's most important river basins, has
been severely impacted by climate change. Yet, the magnitude and intensity of
climate change's impact on water resources as a major driver of irrigation and food
production are not well understood. Thus, in this study, we used the Soil and Water
Assessment Tool (SWAT) hydrological model to assess the implications of climate
change for water resources in the upper KRB, Afghanistan. Four general circulation
models (CanESM5, MIROC6, MPI-ESM1-2-LR, and NESM3 with SSP2-4.5 and
SSP5-8.5) were used for climate data projections of four periods (the 2030s, 2050s,
2070s, and 2090s). LARS-WG was applied to downscale GCM data. The findings
revealed that the mean monthly temperature is projected to increase under both
SSPs for the 21st century. Annual projected precipitation decreases under the SSP2-
4.5, and a decrease for the 2030s and 2050s and an increase for the periods 2070s
and 2090s under the SSP5-8.5. For the wet seasons, precipitation is decreasing
while it is increasing during the dry seasons. The annual stream flow will decrease
from -2.7 to -12.0% under SSP2-4.5 and from -0.3 to -1.8% for the 2030s and
2050s under SSP5-8.5 respectively, whereas it will increase by 5.1% for the 2070s
and 4.5% for the 2090s respectively. This study gives crucial information about
water resource management and planning in the upper Kabul River Basin in the
context of climate change.
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1. Introduction

Global warming has become a major concern,
posing significant threats to regional and
continental water bodies, energy systems, food
systems, and biodiversity systems (Hyandye et
al., 2018). It is predicted to raise regional and
global air temperatures and increase variability in
precipitation amounts and regimes (Wang et al.,
2020). Assessing the impact of climate change on
streamflow is a key part of a proper water
resource management plan to reduce its adverse
effects (Kurylyk et al., 2014; Golladay et al.,
2020). Climate change substantially influences
water supplies, not only in precipitation and
temperature but also in streamflow (Aawar and
Khare, 2020). Besides climate change, human-
caused land use/cover change (LUCC) has an
impact on hydrologic features such as surface
flow, groundwater, and water yield (Wang and
Stephenson, 2018). An increase in streamflow
directly relates to vegetation and soil infiltration
since a large amount of rainfall is converted to
runoff, decreasing soil infiltration to recharge
groundwater resources (Nyatuame et al., 2020).
An assessment of water resource change in the
sense of climate change will furnish policymakers
with a scientific foundation to develop viable
watershed management plans (WMPs) that
contribute to various processes, such as ecological
systems and agricultural sectors.

General circulation models (GCMs) are the
primary mathematical models used to forecast
climate impacts. Various modeling groups
examine the effects of the previous era, present,
and upcoming global warming on a global or
synoptic scale as part of the combined model
intercomparison project (CMIP). Moreover, its
results are being used to analyze the influence of
climate change on water resources by utilizing
hydrological models (Eyring et al., 2016; Alamdari et
al., 2017). In recent years, there has been an
increasing number of GCM models available
(Eyring et al., 2016). The Intergovernmental
Panel on Climate Change (IPCC) is currently
working on its sixth assessment report (IPCC),
referring to outcomes from the sixth phase

(CMIP6) (The CMIP6 landscape, 2019). After
almost a decade of model development relative to
CMIP5, three aspects of progress in CMIP6 have
been noted in comparison with CMIP5, including
the number of modeling centers registered for
simulation, which has risen by more than one-
third. Meanwhile, the CMIP6 uses scenarios
focused on socio-economic trends: the shared
socio-economic pathways (SSP1-SSP8) through
shared policy assumptions combined with RCPs.
As a result, multiple business-as-usual scenarios
will be feasible in CMIP6 for climate change
projection. And also, finer resolution and
enhanced physical processes were used in the
design (The CMIP6 landscape, 2019). GCMs can
be applied to hydrologic processes by rescaling
spatial data from coarse to catchment scales (Yu
et al., 2020).

High-resolution climate data improves the quality
of hydrological projections, allowing for a more
accurate projection of water resources in a
watershed. The direct application of general
circulation models (GCM) at a watershed level to
study the hydrological responses to climate
change without high-resolution climatic input data
is limited due to their coarse resolution (Willems.
P and Vrac. M, 2011; Skoulikaris et al., 2020).
Therefore, downscaling and bias correction of
climate model simulation is strongly advised
before using it for hydrological effect assessment.
Otherwise, there will be a considerable disparity
between the GCM's performance and historical
observations (Teutschbein and Seibert, 2012;
Ramirez-Villegas et al., 2013). Hydrological
models are generally used for the combination of
climate change and hydrological processes. The
SWAT model can simulate hydrological
procedures and incorporate them into the climate
change impact simulations (Ficklin et al., 2010),
which is commonly used across the entire globe.
(Abbaspour et al., 2018).

Afghanistan is a semi-arid country with a high
level of precipitation variability and
inconsistency. The surface water of Afghanistan
is separated into five major river basins based on
morphology and hydrology systems: the Amu-
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Darya River Basin, Kabul, Helmand, Harirud-
Murghab, and Northern (Nasimi et al., 2020). The
Kabul River Basin (KRB) is among the most
crucial river basins in the country, and it is a
shared river basin with Afghanistan and Pakistan.
KRB serves as a water source for over 20 million
people and is primarily used by both countries for
hydropower generation and irrigation (Wi et al.,
2015). As a result, determining how climate
change will affect water resources in this
catchment is crucial for proactive water
management. Over the last few decades, several
dams have been constructed or planned to be built
in the KRB. Streamflow changes may affect the
efficiency of sediment trapping, hydropower
generation, and storage facilities in reservoirs.
Accordingly, the investigation of climate
changeimpacts on streamflow is essential for
appropriate design and dam operation (Nafees et
al., 2016). The Kabul River's flow mostly comes
from snowmelt in the mountains in winter and
early spring precipitation. However, the
precipitation that falls on the mature snowpack in
the mountains during late winter and early spring
can contribute to higher water levels in the
streams (Lashkaripour and Hussaini, 2008).

The effects of climate change on the KRB runoff
have been assessed in several studies (e.g.,
Ghulami, 2017; Alokozay and J, 2020; Hashmi et
al., 2020; Bromand, 2015). Ghulami (2017)
analyzed climate change impacts for three periods
(the 2020s, 2050s, and 2080s) using eight GCM
models in CMIP5 under RCP4.5 and RCP8.5, and
the results showed a likely increase in runoff in
the KRB, mainly due to the temperature increase,
which causes more snow and ice melting in the
catchment. Alokozay and J (2020) investigated
the runoff responses to climate change for the
period (2046-2064) using four GCM models and
three climate scenarios (A2, A1b, and B1). They
found an increase in runoff in January, February,
March, and April months between (35% to 45%),
and an expectation of a decrease in June, July,
August, and September months between (40% to
50%). Bromand (2015) used three climate
scenarios (A2, A1B, and B1) based on four GCM
models and found that streamflow in the study
area would decrease by approximately 24 percent

during the period (2046–2064). Hashmi et al.
(2020) conducted another investigation of
streamflow in the face of climate change in the
KRB based on four GCMs and two emission
scenarios (RCP 4.5 and RCP 8.5) for two time
periods (2011-2030 and 2031-2050) in which
river discharge is anticipated to increase in the
study region.

In the KRB, there are presently very few studies
on how streamflow changes in response to climate
change. Notably within the upper stream inside
Afghan territory. The upstream of KRB is
important not only for local purposes but also for
maintaining the water supply, flood control, and
ecological services for the downstream. Since
CMIP6, the latest state of GCMs has introduced
improvements in various aspects (Gusain et al.,
2020). The study's authors expect that this
advancement in the new state of GCMs will yield
more reasonable and reliable results in the upper
KRB. This is the first study using CMIP6 models
to investigate future climate change (precipitation
and temperature) and its influence on water
resources in the upper subbasin of KRB, which
has not been done before. This was attained by
applying the hydrological model Soil and Water
Assessment Tool (SWAT) driven by four GCM
projection models under two Shared
Socioeconomic Pathways scenarios (SSP2-4.5
and SSP5-8.5) generated by the Long Ashton
Research Station Weather Generator (LARS-
WG). Therefore, the findings of this study could
be utilized by water managers to develop a
comprehensive plan for managing water resources
in the KRB.

2. Materials and Methods

2.1. Study area

The current study focuses on the upper subbasin
of KRB (Figure 1). The total basin of the study
area is 850 km2, with the highest elevation of
4485 and a minimum elevation of 1740 MASL.
Kabul, the largest city and capital of Afghanistan,
has a population of 4.2 million and a semi-arid
and continental climate.The KRB is situated in
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eastern Afghanistan between longitude 67º 40' to
71º 42' E, and latitude 33º 33' to 36º 02' N. It
originates from the Paghman mountain range
(Sanglakh region), 72.42 km west of Kabul City,
which is part of Afghanistan's Hindu-Kush
Mountains. After passing through Kabul and
Jalalabad, the Khyber Pass into Pakistan, and
Peshawar joins the Indus River northwest of
Islamabad (Lashkaripour and Hussaini, 2008;

Rasouli et al., 2015; Zaryab et al., 2017). A total
of 67,370 km2 of the drainage area is associated
with the Kabul River, which has a length of 700
km and flows for 560 km inside Afghanistan (Wi
et al., 2015). With mean annual streamflow of 24
billion cubic meters, KRB represents about 26
percent of Afghanistan's total water resources. It
accounts for 12% of Afghanistan's total land
(Sidiqi et al., 2018).

Figure 1. Study area.
2.2. Datasets

We obtained daily recorded meteorological data,
including maximum and minimum (Tmax &
Tmin) air temperatures, daily precipitation, and
relative humidity data, at four metrological
stations located in and near the study area from
the Ministry of Energy and Water of Afghanistan
(MoWE) for the period (2004-2020).

Daily projected future climate data (Tmax, Tmin,
and precipitation) derived from the GCMs' sixth
Assessment Report (AR6). Four climate models
(CANESM5, MPI-ESM1-2LR, NESM3,
MIROC6) have been selected from the CMIP6,

for the historical period 1929-2014 and the future
period 2022-2099, under two Shared
Socioeconomic Pathways (SSP5-8.5 and SSP2-
4.5) (https://esgfnode.llnl.gov/search/cmip6/).
SSP5-8.5 is subjected to the highest-radiation
emission scenario with 8.5 Wm−2 of radiative
forcing at the end of the century. SSP2-4.5, with
4.5 Wm-2 of radiative forcing till 2100, embodies
a moderate emissions scenario, which results in
medium to high social vulnerability and the
difficulty of mitigation (O'Neill et al., 2016).
Among the scenarios, the SSP5-8.5 describes the
effects of unconventional development as the
worst possible future scenario. As a result, it is
used to prepare plans to mitigate and adapt to
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climate change in the worst-case scenario (Touma
et al., 2015; Ma et al., 2021). The SSP2-4.5,
which has raised broad concerns in most countries
attempting to achieve sustainable development,
must also be focused on (Riahi et al., 2017).
Therefore, we used the SSP2-4.5 and SSP5-8.5
scenarios to study the effect of climate change on
water resources in the upper subbasin of KRB.

The Digital Elevation Model (DEM) with a 90 m
spatial resolution was obtained from
(https://earthexplorer.usgs.gov/) and used to
create the watershed delineation and topographic
characterization in Arc SWAT 2012. The DEM
map is generated using Arc GIS 10.7 (Figure 2a).

The soil dataset was obtained from the Food and
Agriculture Organization (FAO)
(https://www.fao.org). And the study area soil
map is extracted by using Arc GIS 10.7 (Figure

2b). The type of soil, coupled with the physical
and chemical characteristics of the soil, such as
hydraulic conductivity, water content, bulk
density, and soil material percentage (clay, sand,
silt), has an important impact on streamflow
(Galata et al., 2020).

The supervised land cover classification for the
SWAT model for 2019 has been created by
Google Earth Engine (GEE), using Landsat 8 OLI
(Figure 2c). The Random Forest Classifier (RFC)
method is used for the classification (Phan et al.,
2020). A cloud mask is used to prevent cloud
contaminants (Mateo-García et al., 2018). The
accuracy assessment showed 80.1% for the study
area LULC. Monthly river discharge data is
provided by the MoWE for four hydrological
stations from 2004 to 2018 for SWAT model
inlet, calibration, and validation periods.

Figure 2. a) Elevation map, b) Soil map, and c) LULC map of upper Kabul River Basin (KRB).
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2.3. General methodology

The research methodology used in this study
illustrates in Figure3. The Soil and Water
Assessment Tool (SWAT), a comprehensive
hydrological model, is employed to simulate
streamflow. This model is widely used to assess
and predict the impact of various management
scenarios on water resources (Arnold et al.,
1998). The Sufi2 algorithm provided by SWAT-
CUP was used to calibrate and validate the
simulated streamflow (Khalid et al., 2016). In the
next section, a statistical downscaling model,
LARS-WG, was used to produce future climate
data derived from GCM models to assess climate

change. The output data for maximum and
minimum temperatures and daily precipitation are
compared to the baseline period under the SSP2-
4.5 and SSP5-8.5 scenarios. In the third section,
the calibrated SWAT model was then employed
in SWAT projection modeling, driven by
stochastically generated future climatic scenarios
under SSP2-4.5 and SSP5-8.5. In a comparison
between the baseline and the future streamflow
simulations, the effect of climate change on
streamflow was finally assessed during four
future periods: the 2030s (2022-2039), the 2050s
(2040-2059), the 2070s (2060-2079), and the
2090s (2080-2099).

Figure 3. Research methodology framework.

2.4. Stochastic weather generation

The Global Climate Model (GCM) outputs are
produced at a coarse spatial resolution. It is
difficult to accurately correlate the direct usage of
GCM outputs with regional climate change

implications (Zhang et al., 2019). Consequently, a
downscaling technique is required to rectify the
disparity between the GCM outputs and the inputs
to the hydrological models (King et al., 2012).
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Various statistical downscaling methods are
available to develop climate projection data based
on the stations (Khoi, 2019a). As part of this
study, the Long Ashton Research Station Weather
Generator (LARS-WG) is used to generate
temperature and precipitation data for future
periods and a hydrological model based on
different climate scenarios. The stochastic
weather generator developed by Semenov and
Stratonovich is based on the series method (Khoi,
2019a). It can generate a better result since it is
capable of creating synthetic daily rainfall series
that are substantially similar to the measured data.
The LARS-WG model uses daily time series of
temperatures (Tmin and Tmax), precipitation, and
solar radiation at a single station. LARS-WG
generates daily precipitation data using a semi-
empirical distribution model. On the other hand,
temperature series are constructed using a finite
Fourier series, which is different from the
precipitation solution method (Baghanam et al.,
2020). This model has been tested in various
climates and provides reliable weather statistics,
including extreme weather occurrences (Khoi,
2019b).

We calculated the monthly mean temperatures
(Tmax and Tmin), precipitation, wet and dry
periods, and daily mean temperature standard
deviations for each GCM throughout the
historical and future periods. Then these change
factors of climate data are applied to each of the
four GCM models to generate the future climate
for periods (the 2030s, 2050s, 2070s, and 2090s)
considering the baseline period (2004-2020).
They have been used to perturb LARS-WG site
characteristics to produce future daily climate
data for each GCM.

2.5. SWAT model

This study uses the Soil and Water Assessment
Tool (SWAT) (version 2012) to simulate the
response of streamflow to climate change in the
upper subbasin of KRB. In SWAT, a semi-
distributed, physically based, and long-term
simulation model, water, agricultural chemical
yields, and sediment in large basins are simulated

by taking into account various soil types, land
uses, and management conditions (Arnold et al.,
1998). For assessing and simulating the response
of hydrology to climate change, the SWAT model
has been validated and proven reliable in many
countries (Shrestha et al., 2013; Gassman et al.,
2014; Tan et al., 2019; Tan et al., 2020). The
SWAT model divides the basin into several
subbasins depending on the river systems and
topography of the basin. And each subbasin is
divided into hydrologic response units (HRUs)
with different soil types, slope classes, and land-
use characteristics. The flow is computed first at
HRUs and then added to the relevant subbasin
and finally added to the basin's outlet (Neitsch et
al., 2011). SWAT uses the water balance equation
to simulate the hydrologic cycle, as given in
Equation (1), which includes processes such as
precipitation, evapotranspiration, surface runoff,
infiltration, lateral flow, percolation, and
groundwater flow (Neitsch et al., 2011).

SW0 and SWt are the initial and final soil water
content (mm), t is the time (days), Rday is daily
precipitation(mm), Qsurf is the amount of surface
runoff on a day, ET is the amount of
evapotranspiration on a day, Wap is the amount of
water entering the vadose zone from the soil
profile on a day (mm), and Qgw is the amount of
return flow (or base flow) on a day i (mm).

SWAT uses the modified Soil Conservation
Service (SCS) curve number (CN) method to
calculate surface runoff from daily rainfall (SCS,
1972). The SCS–CN equation is an efficient and
robust method for predicting runoff from daily
precipitation data based on Equation (2) (Arnold
et al., 1998)

where Q = surface runoff in (mm), and R = depth
of daily rainfall (mm). S = retention parameter,
which is defined in Equation (3).
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CN = curve number (100 ≥ CN ≥ 0, CN = 100
indicate zero potential retention, and CN = 0
indicate an infinite catchment with S = ∞.)

2.6. Model setup, Sensitivity analysis,
Calibration, and Validation

The SWAT model input data for the period 2006
to 2020 consists of digital elevation models
(DEM), land use maps, soil maps, and several
metrological datasets, such as precipitation, Tmin,
Tmax, and relative humidity. As defined by the
FAO, the soils of the study area are classified into
three categories (I-B-U2-c, I-X-c, and Jc37-2a).
And land-use was classified into seven different
classes. The SWAT model divided the research
area into 63 sub-basins and 172 HRUs. For the
purpose of calibrating and validating models, we
used the Tangi Gharo Hydrological Station, the
outlet of the study area.

The precision of SWAT simulations is dependent
to a great extent on the calibration and validation
processes (Zhang et al., 2019). For SWAT model
calibration, validation, and sensitivity analysis,
we used the SWAT Calibration and Uncertainty
Program (Abbaspour et al., 2007) (SWAT-CUP).
Several sensitivity analyses were performed along
with calibration in order to identify the most
influential parameters. For calibration and
uncertainty analysis, the SUFI2 algorithm was
used, which is commonly used to calibrate SWAT
models (Sao et al., 2020). The SWAT model was
performed daily. At Tangi Gharo Hydrological
Station, the calibration and validation of the
model were carried out monthly, as there was no
reliable daily streamflow data. Calibration and
validation were performed using monthly

streamflow records from 2006 to 2014 and 2015
to 2018. The warm-up period was from 2004 to
2005.

Evaluation of model performance was based on
Nash-Sutcliffe Efficiency (NSE), coefficient of
determination (R2), root mean square error to
standard deviation of observed data (RSR), and
percentage bias (PBIAS), which are explained in
Equations. (4, 5, 6, and 7). In accordance with
Moriasi's recommendations, there are four
performance ratings for the model (Excellent,
Good, Satisfactory, and Unsatisfactory) (Moriasi
et al., 2007) (Table 1).

where Observed and simulated values are Qoi and
Qsi at the month i, observed values are Qavg,
simulated values are Q' avg, and n is the number
of data values.

Table 1. Monthly statistics model performance rating.

P. RATING NSE R2 PBIAS RSR
Excellent 0.75<NSE≤ 1.00 0.75＜R2 ≤ 1 PBIAS<± 10 0 <RSR≤ 0.5
Adequate 0.65 <NSE≤ 0.75 0.65＜R2 ≤ 0.75 ±10≤ PBIAS< ± 15 0.5 < RSR ≤ 0.6
Satisfactory 0.50 <NSE≤ 0.65 0.5＜R2 ≤ 0.65 ±15 ≤ PBIAS< ±25 0.6 < RSR ≤ 0.7
Unsatisfactory NSE≤ 0.50 R2 ≤ 0.5 PBIAS> ±25 RSR >0.7
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3. Results and Discussion

3.1. Precipitation and temperature bias
correction

A comparison of the bias-corrected and
uncorrected ensemble of GCMs with observed
precipitation data for the period 2004-2020 is
shown in Figure4. The observed data and the
uncorrected GCMs had a significant difference.
The results show that the average monthly
precipitation before downscaling in January,
February, March, July, and August is
underestimated, while the remaining months are
overestimated compared to the observed
precipitation under SSP5-8.5. For the SSP2-4.5,
the average monthly precipitation for September,
October, November, and December are
overestimated, and the precipitation for the
remaining months is underestimated. The results
show that both SSPs (SSP2-4.5 and SSP5-8.5)
mean monthly precipitation and observed follow
similar patterns after being downscaled, which
demonstrates the accuracy of LARS-WG in
generating climate normals. The results after
downscaling show that the average monthly

rainfall in January, February, July, August,
October, and December is overestimated, while
the average monthly precipitation for the
remaining months is underestimated at the
observed station under both SSPs scenarios. The
uncorrected SSPs of maximum temperatures from
June to September are overestimated, while the
remaining months are underestimated. Similarly,
the minimum uncorrected temperature from May
to October is overestimated, and it is
underestimated for the other months. After
downscaling, the maximum and minimum
temperatures for the baseline under both SSPs are
overestimated compared to ground measured data
(Figure 5).

In order to validate the performance of the GCM
simulations on precipitation and temperature,
some statistical tests (the R2, RMSD, NSE, and
MBE) were performed (Table 2). The values were
determined by comparing the simulated climate
data based on the two SSP scenarios with the
actual values recorded at the station. According to
the results, it is feasible to assess the impact of
climate change in the study area using the output
of GCM simulations.

Figure 4. downscaled precipitation.
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Figure 5. downscaled maximum and minimum temperature.
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Table 2. Descriptive statistics and uncorrected/corrected precipitation and temperature by the
downscaling model (LARS-WG6).

3.2. Temperature projection

The maximum and minimum mean monthly
projected temperatures in the upper KRB are
anticipated to increase in the twenty-first century
relative to the baseline. The ensemble-mean
monthly projected maximum temperature
increases by 2.4°C under SSP2-4.5 and 3.6°C
under SSP5-8.5 in the 2030s. By mid-century, the
temperature increases by 2.9°C for SSP2-4.5 and
4.5°C for SSP5-8.5. In the 2070s, temperature
increases by 3.1°C under SSP2-4.5 and 4.8°C
under SSP5-8.5; and 3.2°C for SSP2-4.5 and
5.0°C relate to SSP5-8.5 in the 2090s (Figure6).
Similarly, under SSP2-4.5, the ensemble-mean
monthly projected minimum temperature is
projected to rise by 2.0°C by 2030s and by 2.9°C
under SSP5-8.5. In the midcentury period, 2.5°C
and 3.5°C of warming are expected in the SSP2-
4.5 and SSP5-8.5 scenarios, respectively. From
the 2070s to the end of the century, temperature
increases by 2.7°C to 2.8°C under SSP2-4.5 and

3.8° to 4.0°C under SSP5-8.5 (Figure7). For all
the months, the long-term mean monthly
temperature (maximum and minimum) increased
relative to the baseline under both SSPs. The most
significant increase in mean monthly Tmax is by
4.0°C in the SSP2-4.5 and 5.9°C in the SSP5-8.5
scenarios for the March months in the 2090s.
Similarly, the mean monthly minimum
temperature increases under both emission
scenarios for all months, where the largest
increase is 3.2°C and 4.4°C in the 2090s for the
February months. Overall, the rise in temperatures
in winter and spring is more significant than in
other seasons. Increases in maximum and
minimum temperatures probably raise the
percentage of evapotranspiration and snow
melting and increase the risk of drought during
the dry season. Furthermore, an increase in
temperature will probably have an impact on the
area's water demand. A proper water management
strategy is required in order to respond to such an
impact of climate change.

Climate variables Scenarios Statistical Tests
R2 NSE RMSD MBE

Precipitation Uncorrected SSP2-4.5 0.624 0.104 15.55 5.367
SSP-58.5 0.798 0.018 14.69 8.083

Corrected SSP2-4.5 0.956 0.946 5.457 1.858
SSP-58.5 0.976 0.974 3.828 1.25

Maximum
Temperature

Uncorrected SSP2-4.5 0.993 0.941 2.776 1.008
SSP-58.5 0.994 0.938 2.85 1.125

Corrected SSP2-4.5 0.997 0.996 0.545 0.258
SSP-58.5 0.998 0.994 0.668 0.492

Minimum
Temperature

Uncorrected SSP2-4.5 0.993 0.94 2.339 -0.13
SSP-58.5 0.993 0.94 2.28 -0.12

Corrected SSP2-4.5 0.998 0.997 0.406 0.233
SSP-58.5 0.998 0.996 0.49 0.367
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Figure 6. Projected ensemble-mean monthly maximum and minimum temperature under SSP2-4.5.

Figure 7. Projected ensemble-mean monthly maximum and minimum temperature under SSP5-8.5.

3.3. Precipitation projection

Precipitation in the study area compared to the
baseline shows a change under SSP2-4.5 and
SSP5-8.5 in the future. Figure 8 shows the mean
seasonal and annual precipitation changes (%) for
four mean ensembles of GCMs. The ensemble
mean annual precipitation shows a decrease of
11.7%, 5.6%, 7.2%, and 7.8% under SSP2-4.5 for
periods (the 2030s, 2050s, 2070s, and 2090s), and
a decrease of 0.1% and 0.6% under SSP5-8.5 for
the period 2030s and 2050s. On the contrary, for
the 2070s and 2090s, projected annual
precipitation increased by 5.4% and 4.7%,
respectively.

On the seasonal level, precipitation increase
steadily in the dry season (summer months) until
the start of the wet season under both scenarios.
However, the precipitation decreases from the wet
season (winter to early spring) until the dry
season (summer). Mean seasonal precipitation
change by -23.7%, -17.9%, -17.9%, and -16.2%
for the winter, -11.4%, -4.0%, -8.9%, and -10.6%
for the spring, +30.3%, +50.3%, +55.7%, and
+34.0% for the summer, +8.3%, +1.8%, +0.8%,
and +8.7% for the autumn under SSP2-4.5.
Similarly, change by -3.0%, -4.8%, -3.4% and -
0.6% for the winter, -4.3%, -13.9%, +0.7%, and
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-5.0% for the spring, +13.5%, +32.9%, +40.7%,
and +31.5% for the summer, +19.5%, +42.4%,
+36.3%, and +46.1% for the autumn under SSP5-
8.5 compared to the baseline.

In spite of the projected decline in future
precipitation under SSP2-4.5, the long-term mean
monthly precipitation regime is not anticipated to
drop during the year; different GCM show both
positive and negative deviations from the baseline
(Figure 9). The ensemble of selected GCMs
shows a decrease of 23% to 17% in February
under SSP2-4.5 and 3.6% to 30.8% in May under

SSP5-8.5. There was a significant increase in
precipitation in August, ranging from 68.4% to
94.6% under SSP2-4.5 and 49.9% to 70.2% in
September under SSP5-8.5.The findings of this
study are quite similar to UNEP 2016 results for
Afghanistan, where future precipitation decreases
under the optimistic scenario in CMIP5 till 2100,
and spring precipitation decreases under the
pessimistic scenario. Although the precipitation
rate seems to increase in the dry season (Aich and
A.J, 2016), precipitation declines during the wet
season may significantly affect the area's water
resources.

Figure 8. Projected ensemble-mean annual and seasonal precipitation relative change for the periods of
2022-2099 under the two SSP scenarios.

Figure 9. Projected ensemble-mean monthly precipitation relative changes for four time periods under
SSP2-4.5 and SSP5-8.5.
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3.4. SWAT calibration and validation

The SWAT model was calibrated and validated
using 15 model parameters, as shown in Table 3.
A comparison of SWAT-monthly simulated and
observed monthly streamflow for the calibration
(2006-2014) and validation periods (2015-2018)
with precipitation is shown in Figure 10, and the
scatter plots in Figure 11. During calibration and
validation, the NSE values for the SWAT-
simulated monthly streamflow versus the
observation were 0.72 and 0.56, and the R2 values
were 0.72 and 0.60. The PBIAS values were 0.1%
and 4.5%, and the RSR values were 0.53 and
0.66, respectively. Results were rated as "good" in
calibration and "satisfactory" in the validation
period.

The model effectively captures both low and high
flow according to the depiction of the river
discharge in Figure10 and the scatter plots in Fig.
11. In addition to the above, SWAT could not
fully capture some of the high flows observed.
With the concern of the existing conditions for
simulation, which had a negative effect on the
accuracy of the simulation, SWAT used the
degree-day factor method to calculate snowmelt,
which can't simulate snow with high accuracy
(Raoof et al., 2017). Also, the small area of the
studied watershed and its low flow rate naturally
cause the coefficient of variation in this data to be
high, which decreases the simulation accuracy.
Another issue that has played a negative role in
the simulation is water consumption for
agricultural use, with no reliable data available to
apply to the model.

Fig. 10. SWAT simulated and observed monthly streamflow for calibration (2006-2014) and validation
(2015-2018) periods.

Fig. 11. scatter plots of observed and simulated streamflow for the calibration and validation period.
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Table 3. parameters used for calibration and validation.

Rank Parameters Parameters description
Par.range

Fitted values
MIN MAX

1 v__PLAPS.sub Precipitation lapse rate 0 100 0.494905
2 v__TLAPS.sub Temperature lapse rate -10 10 -3.346961

3 v__SFTMP.bsn
[OPTINAL] Snowfall
temperature

-5 5 1.570583

4 v__SMTMP.bsn Snow melt base temperature -5 5 -1.660388
5 v__SMFMN.bsn Minimum melt rate for snow 0 10 4.128043

6 v__SMFMX.bsn
Maximum melt factor
(mm°C/day)

0 10 7.033943

7
v__GW_DELAY.
gw

Groundwater delay (days) 0 500 15.235995

8 v__GWQMN.gw
Threshold depth of water in the
shallow aquifer required for
return flow to occur (mm)

0 5000 1.202260

9
v__GW_REVAP.
gw

Groundwater "revap"
coefficient

0.02 0.2 0.2

10 r__CN2.mgt SCS curve Number -0.3 0.3 -0.103984

11 v__CH_N2.rte
Manning's "n" value for the
main channel

-0.01 0.3 0.2

12
v__ALPHA_BF.g
w

Base flow alpha factor (days) 0 1 0.949094

13 v__TIMP.bsn Snowpack temperature lag 0 1 0.9

14
r__SOL_AWC
.sol

Available water capacity of the
soil layer

0 1 0.203996

15 v__ESCO.bsn
Soil evaporation compensation
factor

0 1 0.331219

Note: "v" means the parameter value which is replaced by the given value, and "r" represents the parameter
value that is multiplied by (1 + a given value).

3.5. Projected changes in streamflow

Average monthly future simulated streamflow
using two climate scenarios (SSP2-4.5 and SSP5-
8.5) and an ensemble of four GCMs for the
periods (the 2030s, 2050s, 2070s, and 2090s)
were analyzed by comparing them with the
baseline streamflow (2004-2020). We utilized the
simulated streamflow for the baseline generated
by LARS-WG produced baseline climate to
reference future forecasts (Fig.12). Since models
cannot generate the streamflow accurately as
gauged on the ground for the base period, this
method may assist in reducing the possible bias
caused by synthetic meteorological data and also

the hydrological model (Ma et al., 2021). Figure
12 demonstrates that the projected baseline
average monthly streamflow generated by the
LARS-WG is typically similar to the measured
streamflow. Three GCMs (MIROC6, MPI-ESM1-
2-LR, and NESM3) projected that peak flow
event times are expected to shift from April to
March in the future. In addition, the mean
monthly streamflow ensemble indicates the same
shift of peak flow from April to March. The
projected streamflow shows a decrease for all
periods of SSP2-4.5 and the 2030s and 2050s of
SSP5-8.5. In contrast, there is an increase in the
2070s and 2090s compared to the baseline period.
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Annual streamflow shows the largest decreases by
-12.0 under SSP2-4.5 and by -1.8% under SSP5-
8.5, whereas it shows the highest increases by
5.1% in the 2070s in SSP5-8.5. On a seasonal
basis, as shown in Fig.13 river discharge could
fluctuate by -15.4%, -7.7%, -7.2%, -7.2% for the
winter, -20.0%, -11.1%, -16.5%, -15.7% for
spring, +4.2%, +15.9%, +17.2%, +6.3% for
summer, and +8.3%, +19.0%, +19.9%, +24% for
autumn under the SSP2-4.5 scenario. Similarly,
river discharge under SSP5-8.5 could fluctuate by
+2.18%, +5.4%, +6.4%, +9.29% for the winter, -
7.9%, -21.4%, -6.4%, -9.1% for the spring, -7.1%,
+8.1%, +11.0%, +8.8% for the summer, and
+26.3%, +27.6%, +33.1%, +33.9% for the
autumn season compared with the baseline period.
On a monthly basis, under both SSPs scenarios,
the ensemble-mean streamflow is projected to
increase considerably in August by 19.3% to
52.2% under SSP52-4.5 and 30.0% to 68.3%
under SSP5-8.5 for September. In the 2070s
period under both SSPs, there is a larger increase
in August streamflow than in the other three
periods, as depicted in Fig. 14. Among the four
GCMs, the median of NESM3 under both
scenarios gave the highest annual decreasing

streamflow trend, from 13.2% to 50.4%, and
CanESM5 showed the highest streamflow
increase trend, from 15.9% to 38.3%, under both
SSPs, which correspond to the increased rainfall
changes projected by these GCMs. The expected
streamflow change is associated in future periods
with the magnitude of rainfall and changes in
temperature over the basin. The effect of expected
changes in river discharge on water consumption
planning can be significant. For instance, a
decline in available river discharge during the
winter season will put more strain on water
supply, irrigation systems, and hydropower
plants. In line with current findings, Zhai et al.
(2020) concluded that in the northwest of South
Asia including Afghanistan under CMIP6, the
projections for the future 2020-2100 show an
increase in water deficiency till the end of the 21st
century due to a reduction in precipitation and a
rise in temperature (Zhai et al., 2020). A decrease
in water availability is mainly because of a
reduction in precipitation and increased
evapotranspiration due to temperature rise, and
this illustrates the critical impact of global
warming on the Kabul River basin's annual water
availability (Bromand, 2015).

Figure 12. Observed mean monthly streamflow against streamflow driven by LARS-WG for the baseline.
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Figure 13. Projected ensemble-mean annual and seasonally relative changes in streamflow for the periods of
2022-2099 under the two SSP scenarios.

Figure14. Projected ensemble-mean monthly relative changes in streamflow for the periods of 2022-2099
under the two SSP scenarios.

4. Conclusion

An assessment of climate change's effects on
water resources in the upper Kabul River Basin
(KRB) was conducted in this study. Climate
change was projected for four future periods (the
2030s, 2050s, 2070s, and 2090s) relative to the
baseline (2004-2020) using an ensemble of four
GCMs in CMIP6 under two emission scenarios
(SSP2-4.5 and SSP5-8.5). For all four periods,

every GCM projected an increase in the monthly
mean maximum and minimum temperatures. The
precipitation shows a decrease for the 21st century
under SSP2-4.5 and for the periods 2030s and
2050s under SSP5-8.5, and an increase for the
2070s and 2090s under SSP5-8.5, decline is by -
13.3% under SSP2-4.5 for2030s and a rise of
5.4% under SSP5-8.5 for 2070s.
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The results showed a decrease in annual
streamflow under SPP2-4.5 and SPP5-8.5, except
for the 2070s and 2090s under SSP5-8.5, which
shows a slight increase. Both scenarios showed a
variation in mean-ensemble seasonal and annual
streamflow from the present to the future due
primarily to precipitation variability and
increasing temperature. The seasonal impact
would be more severe than the annual impact.
Climate change could decrease streamflow during
the wet season (winter to early spring) and
increase flow during the dry season (summer).
Increases in flow during the dry season are due to
increased precipitation and increasing
temperatures, which cause more snowmelt.
According to the study, climate change will
significantly impact water resources, and it
observed inconsistent increases or decreases in
water availability in the area. As a result, such
research could assist hydro-climatologists and
managers in making better scientific decisions
about sustainable agriculture and sustainable
water development in the face of climate change
impacts.
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