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ABSTRACT :

The study on the role of drift wave turbulence associated with plasma instabilities

for the generation of various unstable radiations is an interesting issue. A theoretical

study on the role of drift wave turbulence, in ampli¯cation of high frequency wave has

been mede on the basis of a nonlinear wave particle interaction with drift wave turbulence

in an inhomogeneous plasma. Considering a Maxwellian distribution function model for

inhomogeneous plasma under the standard local approximation, we have estimated the

growth rate of Bernstein mode wave, which is obtained by using the nonlinear dispersion

relation, It has been found that ampli¯cation of Bernstein mode wave is possible at the

expense of drift wave turbulent energy, because plasma particles, acceleraed by drift wave

turbulent ¯eld, may transfer their energy to Bernstein mode wave ththrough a modulated

¯eld. This result may be particularly important for stability of various drift modes in

magnetically con¯ned plasma as well as for transport of momentum and energy in such

inhomogeneous systems.

1. Introduction :

Drift waves occupy a special place in the spectrum of collective plasma processes.

Drift waves are supported by particle drifts, which arises due to gradient in density or

temperature present in the system. Drift wave instabilities are inevitable in any con¯ned

plasma. The study on the role of drift wave turbulence associated with plasma instabil-

ities for the generation of various unstable radiations is an interesting issue for plasma

physicists. The earliest observations of the drift wave were made by Angelo et al.[1] and

by Chen [2]. Subsequently, it has been observed that drift wave turbulence is one of the

dominating turbulence wave energy available in any magneticallycon¯ned plasma and it is

now considered as one of the potentially dangerous source of insatbility in tokamak plasma

[3]. They occur in the edge and core regions of tokamak plasma [1].

Earlier e®orts had been made to explain the observed auroral radiation phenomena

on the basis of cyclotron maser instability, which included the e®ect of inhomogeneity

along the geometric ¯eld lines [4,5]. The space craft observations provided the evidence

that large and small amplitude perturbations of the drift waves associated with the kinetic

Alfven wave turbulence are permanently present in the near earth plasma environment [6].
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The low frequency drift wave ¯elds are found to be strongly in phase relation with thermal

plasma particles. Such a drift wave ¯eld may transfer their wave energy to a nonresonant

wave through nonlinear wave-particle interaction process [7,8].

In a nonlinear numerical simulation study [9] on collisionless drift wave turbulence,

using a hybrid model of drift kinetic electrons and cold ions in three dimensional shared slab

geometry, it has been observed that turbulent particle °ux is directed up-gradient (inward)
Lnfor su±ciently high value of ( ´ = ) . Such particles pinch can be attributed to thee LTe

completely di®erent perpendicular dynamics of slow (resonant) and fast (nonresonant)

electrons, making it a genuinely kinetic e®ect (di®erent regions of electron parallel velocity

(w ) have di®erent dynamics). This observation suggests applicability of kinetic approachk

in drift wave turbulent energy exchange process.

In this paper, we are considering nonlinear wave-particle interaction process in pres-

ence of drift wave turbulence, on the baiss of new plasma turbulence theory. The new

plasma turbulence theory [10 - 12] predicted a wave -particle interaction process called

plasma maser e®ect, which makes a system enable for transfer of wave energy from the

low frquency mode to the high frequency mode. Plasma-maser interaction is a nonlinear

mode - mode coupling process between two types of waves in a turbulent plasma [3]. The

¯rst type of plasma wave is the low-frequency resonant mode wave and the second type is

the high-frequency non-resonant mode wave. The resonant waves are those for which the
~Cherenkov resonance condition ! ¡ k ¢ ~v = 0 is satis¯ed, whereas the non-resonant waves

are those for which both Cherenkov condition and the nonlinear scattering conditions are
~~ ~not satis¯ed, i.e. −¡K:~v 6= 0 and (−¡!)¡ (K¡k) ¢~v 6= 0. Here ! and − are frequencies

~ ~of the resonant and non-resonant waves, respectively, and k and K are the corresponding

wave numbers. As a result of plasma maser e®ect transfer of the wave energy from low-

frequency resonant mode to the high-frequency non-resonant mode may be possible [13].

It has been theoretically established that, plasma maser e®ect is found to be e®ective in

an open system, where free energy from external sources are available [14] in the form of

external magnetic ¯eld. Since plasma maser e®ect is energy up conversion of low-frequency

turbulence to high-frequency modes, it plays an important role in space plasma and as an

e®ective radiation mechanism in the magnetosphere plasma.

In almost all the studies in plasma maser e®ect have been carried out considering the

the plasma system as homogeneous [15 , 16], recently attempts have been to investigate the

role of density gradient parameter in energy upconversion process through plasma maser

e®ect in inhomogeneous plasma [7,8 17,18,19]. In our investigation, we are considering

interaction of the drift wave turbulence present in inhomogeneous plasma with Bernstein

mode wave. Considering a Maxwellian model distribution function under standard local

approximation for inhomogeneous plasma [20], we have obtained the growth rate for Bern-

stein mode wave using nonlinear dispersion relation. Here we consider Fourier transform
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method. The real plasma, particularly in nature, is far from thermal equilibrium state. In

such case, the initial value analysis is not valid [21], because the plasma is turbulent at

the initial time and accordingly, the steady turbulent state is likely to be maintained by

boundary conditions on past history of a plasma. The disribution function is far from a

thermal equilibrium Maxwellian and the disrtibution is approximately steady within the

time scale considered . Further in steady turbulent state of plasma, the °uctuation is

enhanced where the disribution function is far from the thermal equilibrium state.

In our study it is found that ampli¯cation of Bernstein mode wave is possible at the

expense of drift wave turbulence energy. This result is mainly important in stabilizing

various drift modes in fusion plasma as well as explaining transport of momentum and

energy in such inhomogeneous system of ¯nite extent. Moreover, it is also important as

nonlinear interaction of low frequecy resonant mode with thermal particles in long spatial

lengths in magnetosphere can trasfer wave energy burst in space [22].

2. Formulation:

We consider a magnetically con¯ned plasma in presence of drift wave turbulence. The

Bernstein mode, present in the system, is considered as super imposing perturbation ¯eld

to the system.The con¯ning magnetic ¯eld with negligibly small gradient is taken along
~the ~z direction B = B (y) and the system has spatial gradient in y-direction. For such0 0

an inhomogeneous system [23] the particle distribution function is considered as
µ ¶

v v @f (~v; y)x x 0e
f v ; v ; y + ' f (~v; y) + (1)0e ? 0ek

− − @ye e

where f (~v; y) is the distribution function for guiding center, v = v cosÁ, v and0e x ? ?

v are components of velocity along and perpendicular direction of the external magnetick

¯eld, Á is the phase angle of the particle in the orbit and − = eB =mc is the electrone 0

cyclotron frequency.

We now introduce the density gradient as

· ¸
1 @f (~v; y)0e0² = ; (2)
f @y0e y=0

Thus the particle distribution function Eq. (1) reduces to the form

µ ¶ ½ ¾
v vx x 0f v ; v ; y + ' f (~v; y) 1 + ² (3)0e ? 0ek
− −e e

The interaction of high frequency Bernstein-mode wave with low frequency drift wave

turbulence is governed by Vlasov- Poisson equations

" Ã ! #
~@ @ e ~v £B @~+ ~v ¢ ¡ E + ¢ F (~r; ~v; t) = 0: (4)oe

@t @~r m c @~v
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and Z
~ ~r ¢ E = 4¼en f(~r; ~v; t)dv: (5)e

According to the linear response theory of turbulent plasma [24], the unperturbed

electron distribution function and ¯elds are

2F = f + ²f + ² f : (6)0e 0e 1e 2e

and
2~ ~ ~E = ²E + ² E : (7)0e l 2

~where ²(<< 1) is a small parameter associated with turbulent ¯eld E = (E ; 0; E )l l? lk

~with propagation wave vector k = (k ; 0; k ) , f is space and time average part, f ,? 0e 1ek

f are °uctuating parts of the distribution function and E is the second order electric2e 2

¯eld.

To the order of ² from Eq.(3), we have

" Ã ! # µ ¶~@ @ e ~v £B @ e @0 ~+ ~v ¢ ¡ ¢ f = E ¢ f : (8)1e l oe
@t @~r m c @~v m @~v

Using Fourier transforms according to

X
~ ~A(~r;~v; t) = A(k; !) exp[i(k ¢ ~r ¡ !t)]: (9)

~k;!

For low-frequency electrostatic waves, the electron motion along the magnetic ¯eld
~is important. The Fourier component of the corresponding distribution function f (k; !),1e

from Eq.(8), is given by

µ ¶ @~E (k; !) foelkie @vk~f (k; !) = : (10)1e
m ! ¡ k v + i0k k

~where i0 is the small imaginary part associated with ! and k is the wave number of

Langmuir wave ¯eld.
~To this quasisteady state, we apply purturbation ¹±E of test high-frequency Bern-h

~ ~stein mode wave with a propagating vector K = (K 0; 0), electric ¯eld ±E = (±E ; 0; 0)? h

and a frequency − . Thus the total perturbed electric ¯eld, magnetic ¯eld and the electron

distribution function are

2~ ~ ~ ~±E = ¹±E + ¹²±E + ¹² ¢E; (11)h lh

~±B = 0 (12)
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2±f = ¹±f + ¹²±f + ¹² ¢f: (13)h lh

~ ~where ±E ; ¢E are the modulated electric ¯elds, ±f is the °uctuating part duelh h

to high frequency Bernstein mode wave and ±f ; ¢f are electron distribution functionslh

corresponding to modulated ¯elds. In Eqs. (11) to (13), we have omitted second order

¯eld quantities, which can be justi¯ed under random phase approximations.

2To the order ¹; ¹²; ¹² , we obtain from (4)

e @~P±f = ±E ¢ f : (14)h h oe
m @~v

e @ e @ e @~ ~ ~P±f = E ¢ ±f + ±E ¢ f + ±E ¢ f : (15)lh l h h 1e lh oe
m @~v m @~v m @~v

e @ e @~ ~P¢f = E ¢ ±f + ±E ¢ f : (16)l lh lh 1e
m @~v m @~v

where the operator P is given by

Ã !
~@ @ e ~v £B @o

P = + ~v ¢ ¡ ¢ :
@t @~r m c @~v

According to method of characteristics [20], which is also known as "integration over

unperturbed orbit" We solve these di®erential equations for the °uctuating parts of the

distribution function ±f , ±f and ¢f over the electron trajectories. Using the Fourierh lh

transform of Eq.(9) and integrating along the unperturbed orbits we evaluate the various

perturbed distribution functions from Eq.(14) to (16) to obtain the non-linear dielectric

function of the Bernstein mode wave of frequency −, in the presence of the drift wave

turbulence.

~~Now we calculate modulated ¯eld ±E (K ¡ k;−¡ !) by Poisson's equation,lh

Z
~r ¢ ±E = ¡4¼en ±f d~v:lh e lh

in the form
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·½ µ ½ ¾Z2 0! ±E ie m ² T Kpe h e ?~~±E (K ¡ k;−¡ !) =¡ 1 + −¡lh ~~ K m T m−? e ejK ¡ kjR
91
=X J (®)J (®) exp[i(b¡ a)µ]a b A £
;a− ¡−e

a;b
½ µ ½ ¾

0E m ² T Kl? e ?
1 + −¡ ! + k v ¡ £k k

K T m−? e e!
0 0X J (® )J (® ) exp[i(q ¡ p)µ]p q ¡

p− ¡ −¡ k v + !e k kp;q
)

0 0X (17)@ J (® )J (® ) exp[i(q ¡ p)µ]p q
E +lk

@v p− ¡ −¡ k v + !ek k kp;q
Ã !@E f0elkm ie @vk £

T m ! ¡ k v + i0e k k
µ ½ ¾

0² T Ke ?
1 + −¡ ! + k v ¡ £k k

m−e !#
0 0X J (® )J (® ) exp[i(q ¡ p)µ]p q

d~v:
p− ¡ −¡ k v + !e k kp;q

:

·µ ½ ¾Z
2 04¼e n m ² T Ke e ?

R =1 + 1 + −¡ ! + k v ¡k k~~ T m−e emjK ¡ kj
1

0 0X J (® )J (® ) exp[i(b¡ a)µ] @a b A¡ k £k
a− ¡ −¡ k v + ! @ve k k k

a;b (18)
3

0 0X J (® )J (® ) exp[i(b¡ a)µ]a b 5 f d~v:0e
a− ¡ −¡ k v + !e k k

a;b

:

3. The Nonlinear Dispersion Relation:

The nonlinear dielectric function for high-frequency Bernstein mode wave can be ob-

tained from Poisson's equation
Z h i

~ ~ ~r ¢ ±E = ¡4¼en ±f (K;−) + ¢f(K;−) d~v:h e h

This takes the form
~ ~±E (K;−)² (K;−) = 0h h
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The dispersion relation thus obtain can be written as

~ ~ ~ ~² (K;−) = ² (K;−) + ² (K;−) + ² (K;−) (19)h 0 d p

~ ~ ~where ² (K;−) is the linear part, ² (K;−) is the direct coupling part and ² (K;−) is0 d p

the polarization coupling part, The expressions of these parts are given by

Ã !µ ¶ ½ µ ¶Z2 0! m ² T Kpe e ?~² (K;−) =1 + 1 + −¡0 2K T m−e e?
9
=X (20)J (®)J (®) expfi(b¡ a)µga b£ d~v:
;a− ¡ −e

a;b

:

µ ¶ · µ ½ ¾Z2 ³ ´ 02! e m ² T Kpe e ?~² (K;−) =¡ 1 + −¡ £d
K m T m−? e e1

X J (®)J (®) expfi(b¡ a)µga b A£
a− ¡−e

a;b
½ µ ½ ¾

0E m ² T Kl? e ?
1 + −¡ ! + k v ¡ £k k

K T m−? e e!
0 0X J (® )J (® ) expfi(q ¡ p)µgp q

p− ¡ −¡ k v + !e k kp;q
)

0 0X@ J (® )J (® ) expfi(q ¡ p)µgp q¡E +lk
@v p− ¡−¡ k v + !ek k kp;q

Ã !@E f (21)0elk ¡ ©m @vk
1 + −¡ ! + k v ¡k k

T ¡! + k v + i0e k k
!#¾

0 0 0X² T K J (® )J (® ) expfi(q ¡ p)µge ? p q £
m− p− ¡−¡ k v + !e e k kp;q

· µ ½ ¾
0E m ² T Kl? e ?

1 + −¡ £
K T m−? e e !
X J (®)J (®) exp[i(t¡ s)µ]s t ¡

s− ¡ −es;t
#

X@ J (®)J (®) exp[i(t¡ s)µ]s t
E :lk

@v s− ¡ −ek s;t

:
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~The expression for ² (K;−) is very bulky, we can write it in the formp

4 ³ ´2! epe~² (K;−) = [(A + B)£ (C + D)] : (22)p
2 2~~ mK jK ¡ kj R?

where A,B,C,D are given by

· ½ µ ¶Z 0m ² T Ke ?
A =¡ 1 + −¡ ! ¡ k v ¡ £k k

T m−e e9
=0 0X J (® )J (® ) expfi(b¡ a)µg @a b ¡ k £k;a− ¡ −¡ k v + ! @ve k k k

a;b
3 ·

0 0X J (® )J (® ) expfi(q ¡ p)µg E ma b l?5£ (1+
a− ¡−¡ k v + ! K Te ? ek k (23)a;b

!½ ¾
0 X² T K J (®)J (®) expfi(t¡ s)µge ? s t

−¡
m− s− ¡ −e es;t

#
X@ J (®)J (®) expfi(t¡ s)µgs t

+E f d~v:0elk
@v s− ¡−ek s;t

:

· µ ½ ¾Z 0m ² T Ke ?
B = 1 + −¡

T m−e e 1
X J (®)J (®) expfi(b¡ a)µg @a b A¡ k £k

a− ¡ − @ve k
a;b (24)3Ã !@ fX oeJ (®)J (®) expfi(b¡ a)µg @va b k5 d~v:

a− ¡− ! ¡ k v + i0e k k
a;b

:

8
69



· µ ½ ¾Z 0m ² T Ke ?
C = 1 + −¡ £

T m−e e 13
X J (®)J (®) exp[i(b¡ a)µ]a b A5£

a− ¡ −e
a;b
· µ ½ ¾

0E m ² T Kl? e ?
1 + −¡ ! + k v ¡ £k k

K T m−? e e (25)!
0 0X J (® )J (® ) expfi(q ¡ p)µgp q

+
p− ¡− + k v + !e k kp;q

#
0 0X@ J (® )J (® ) expfi(q ¡ p)µgp q

E f d~v:0elk
@v p− ¡− + k v + !ek k kp;q

:
Ã !@Z foem @vk

D =¡ £
T ¡! + k v + i0e k k

µ ½ ¾
0² T Ke ?

1 + −¡ ! + k v ¡ £k k
m− (26)e !

0 0X J (® )J (® ) expfi(q ¡ p)µgp q
d~v:

p− ¡−¡ k v + !e k kp;q

:

4. Instability:-

The growth rate of Bernstein mode wave is calculated by using the following formula:
" #

2@ ²1 0I ² +° m hh 2 @−@t= ¡ : (27)
@²0− −
@− −r

The second part of growth rate formula (Eq.(27)) is due to reverse absorption e®ect which

in our case is 2Ã !µ ¶Z22 X!@ ² m J (®)J (®) expfi(b¡ a)µg0 pe a b4=
2@−@t K T a− ¡ −e e? a;b

½ µ ¶ ¾ ¸ (28)0² T K 1 @fe ? 0e£ 1 + −¡ d~v:
m− a−¡ − @te

:

where the slow time change of electron distribution function is given by
³ ´ X2@f (v ) e @ @f0e k 0e2~= ¼ jE (k)j ±(! ¡ k v ) : (29)lk k k

@t m @v @vk k
~k;!
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After partial integration this contribution due to the reverse absorption e®ect becomes

zero.

We consider the plasma-maser interaction between Bernstein mode wave and drift

wave turbulence. The condition for the plasma-maser is ! = k v . We ¯rst estimate thek k

linear part of the dielectric function of Bernstein mode wave from Eq.(20),and considering

the fact that for Bernstein mode wave the most dominant contribution to Bessel's sum

comes from the term a=s=p=1,

Ã ! Ã !µ ¶
2 2! !mpe pe~² (K;−) =1 + + £0 2 2K T 2−e e?

½ ¾
0 (30)− ² T K 1e ?¡ £ :

− ¡ − m− − − ¡ −e e e

:

From Eq.(30),we obtain,

Ã ! µ ¶
2 0!@² 1 ² T K0 pe e ?

= £ £ −¡ : (31)
2 2@− K (− ¡ −) m−e e?

The dominant contribution, for a magnetized plasma, to the plasma-maser comes from
~the imaginary part of polarization coupling term. So we calculate the I ² (K;−) fromm p

?Eq.(22). We observe that A and C are real and B / D , where ? denotes complex

conjugate. So we have

4 ³ ´2! epe~I ² (K;−) = [A£ I D + C £ I B] : (32)m p m m
2 2~~ mK jK ¡ kj R?

Here we consider the dominant part which comes from A£ I D.m
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Hence from Eq. (23), by applying Plasma-maser condition, we have

· ½ µ ¶ ¾Z 0 2 0m ² T K J (® ) @e ? 1A =¡ 1 + −¡ ¡ k £k
T m− − ¡ − @ve e e k
¸ · ½ µ ¶

2 0 0J (® ) E m ² T Kl? e ?1 £ 1 + −¡ £
− ¡ − K T m−e ? e e¾ ¸

2 2J (®) @ J (®)1 1f (~v)¡E f (~v) d~v0e 0elk
− ¡ − @v − ¡ −e ek
µ ¶ · µ ¶Z2 0 2 0m E ² T K J (® )l? e ? 1= 1 + −¡ +
T K m− − ¡ −e ? e eµ ¶ µ ¶

0 2 0 0² T K J (® ) ² T Ke ? e ?1−¡ + −¡ £
m− − ¡ − m−e e e#

2 0 2J (® )J (®)1 1 2¼v f (v )dv dv? 0e ? ?k2
(− ¡−)e

µ ¶ ·Z Z2 1 0m El?
= f (v )dv £ 2¼v f (v )dv +0e ? 0e ? ?k k

T Ke ? ¡1 ¡1µ ¶ Z 10² T Ke ?
−¡ =(− ¡ −) f (v )dv £e 0e k k

m−e ¡1
½Z Z0 0

2 2 02¼J (®)v f (v )dv + 2¼J (® )v £? 0e ? ? ?1 1

¡1 ¡1
¾¸Z 0

2 0 2f (v )dv + 2¼J (® )J (®)v f (v )dv0e ? ? ? 0e ? ?1 1

¡1µ ¶µ ¶½ ¾
0 2E m −¡ (² T K =m− ) (K ¡ k )l? e ? e ? ?

= :
2K T − ¡− 2−? e e e

:

2 0 2after simpli¯cation and taking dominating terms only, considering J (® ) » J (®)1 1
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Ã !@Z Z0 1 E f (v )oelk km @vk
I D = I (1 + f−¡ !+m m

T ¡! + k v + i0e k k¡1 ¡1
!¾

0 0 0X² T K J (® )J (® ) expfi(q ¡ p)µge ? p q
k v ¡ £k k

m− p− ¡ −¡ k v ¡ !e e k kp;q

2¼v f (v )dv dv? 0e ? ?k
½ µ ¶ ¾Z Z0 1 0 2 0m ² T K J (® )e ? 1= 1 + −¡ £

T m− − ¡ −e e e¡1 ¡1
Ã !@E f (v )oelk k@vk

I dv 2¼v f (v )dv dvm ? 0e ? ?k k¡! + k v + i0k k

· ½ ¾Z 0 0m −¡ (² T K =m− )e ? e
= 2¼v f (v )dv + £? 0e ? ?

T − ¡ −e e¡1
¸Z 0

2 02¼v J (® )f (v )dv £? 0e ? ?1

¡1
Ã !@Z 1 E f (v )oelk k@vk

I dvm k¡! + k v + i0k k¡1
½ ¾

0 2−¡ (² T K =m− ) (K ¡ k )e ? e ? ?
=E £lk 2− ¡ − 2−e e( )µ ¶p 2

2 ¼ ! !
exp ¡ :

3v k jk j k vek k ke

:

after simpli¯cation and taking dominating terms only.

Using the expressions for A and I D in Eq.(32), we getm

Ã ! µ ¶µ ¶
4 ³ ´2! e E mpe l?~I ² (K;−) =¡ £m p 2K m K T? e?

½ ¾
0 2−¡ (² T K =m− ) (K ¡ k )e ? e ? ?

E £lk2− ¡ − 2−e e½ ¾
0 2−¡ (² T K =m− ) (K ¡ k ) (33)e ? e ? ? £

2− ¡ − 2−e e( )µ ¶p 2
2 ¼ ! !

exp ¡ :
3v k jk j k vek k ke

:

Here we use the amplitude ratio of the electric ¯eld as derived by Nambu et.al.[21]
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µ ¶~E (k) k kTlk k ke ¡1= f1¡ I (¯ ) exp(¯ )g ´ ¡ Q0 i i~ k T k? i ?E (k)l?

where T , T and I are the electron , ion temperature and modi¯ed Bessel functione i 0

respectively. ³ ´
¡1T2 e¯ = (k ¾ ) =2, Q = f1¡ I (¯ ) exp(¯ )g and ¾ is the ion gyroradius.i ? i 0 i i iTi

The growth rate of Bernstein mode wave due to polarization coupling term, retaining

the dominating terms only, is calculated by using Eq.(27) as

µ ¶ ½ ¾2 0 k° ! ² T K K kp pe e ? ?2~= jE (k)j −¡ £l?
− − m− v ke e e ?( )r µ ¶2

(34)¼m !¡1Q exp ¡ :
M k vek

:

2~ ~~In obtaining RjK ¡ kj , we expand R, from Eq.(18), about small argument k and ! in R
~and we have used the relation ² (K;−) = 0. To the lowest order approximation we can0

2 2~~estimate RjK ¡ kj ' kk

5. Discussion :

Earlier investigation [25] on interaction among drift wave and high frequency Triv-

elpiece - Gould mode through plasma maser e®ect, interesting result about the stability

of drift mode in homogeneous plasma were predicted. In this paper, it has been shown

that nonlinear damping of drift mode occurs through energy exchange among drift mode

and electrostatic Trivelpiece-Gould mode. Here the nonlinear dispersion relation of ion

acoustic mode in presence of drift wave turbulence ¯eld is evaluated, which is a common

feature of inhomogeneous plasma.
~Historically, the plasma-maser from the direct coupling term ² (k;−) was pointed byd

Tystovich and co-worker [26] for an ion-sound turbulence in unmagnetized plasma.But in

a closed system the plasma maser contribution from direct coupling part exactly cancels

out with the reverse absorption e®ect [27], i.e.

2 ~1 @ ² (K;−; f (t))0 0e~I ² (K;−) + = 0:m d
2 @−@t

In this system the low-frequency turbulence and the background electron distribution

function are not ¯xed by external agents, but are free to evolve self-consistently to form a

quasilinear plateau. Then both the plasma maser and the reverse process due to quasilinear

e®ect coexist and there is no net growth of the nonresonant high-frequency test wave.
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In an open system, with a particle supply from outside, the electron distribution

function is ¯xed by external agents and the reversed absorption e®ect vanishes

2 ~@ ² (K;−; f (t))=(@−@t) = 00 0e

then the stationary state without quasilinear plateau is possible. Accordingly, the energy

transferred from the low-frequency waves by resonant interaction must go into an unstable

high-frequency mode. This type of enhanced radiation process is termed as dissipative

structure in plasma turbulence [27]. The dissipation is due to resonant wave-particle

collisionless heating. The nonresonant wave ampli¯cation or absorption can be due to

perturbation of resonant wave-particle collisionless interaction.

Here, an attempt has been made to consider the plasma maser e®ect among electrons,

resonant mode drift wave and the nonresonant Bernstein mode wave in inhomogeneous

magnetized plasma.The inhomogeneity feature of the plasma considered here provides an

additional source of free energy to the system and is now important to clarify the role

of free energy of these drifting particles in this particular mode-mode coupling process of

turbulent inhomogeneous plasma. The nonlinear dispersion relation Eq.(19) is obtained

by neglecting the gradients of the con¯ning magnetic ¯eld . Since polarization coupling is

the dominating term in the Plasma maser e®ect, the growth rate of Bernstein mode wave

is estimated from polarization coupling term only.
0When there is no density gradient (² = 0) the growth rate of Bernstein mode for

homogeneous plasma is obtained,

from Eq.(34), as

rµ ¶2 k° ! K ¼m −kp pe ?2~= jE (k)j : (35)l?
− − v k M Qe e ?

When high density gradient is present in the system of plasma then the growth rate

of Bernstein mode is estimated,

from Eq.(34), as

rµ ¶2 k° ! v ¼mkp pe e2 ¡1 0~= jE (k)j Q £ ² : (36)l?
− − − k Me e ?

However for small order gradient there is no e®ect in the growth rate and Eq.(35) will give

the estimate for such small gradient situation.
¡1By using the following observational data in space : E » 50¹vm , − » ! »l? pep

m¡7 ¡1 ¡5 ¡1100KHz, k » 2¼£ 10 cm , K » 2¼£ 10 cm , − » 250KHz, and » 43? ek M

.

We have from Eq.(35)
°p ¡1' 10 (37)
−
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and from Eq. (36), we have
°p ¡2 0' 10 ² (38)
−

We have from Eq.(36)
°p ¡1' 10 (39)
−

0taking ² = 10:

The Plasma-maser instability of electrostatic Bernstein mode wave in the presence

of drift wave turbulence driven by a weak electron beam is considered for inhomogeneous

plasma. It is found that the Bernstein mode waves propagating perpendicular to a mag-

netic ¯eld are destabilized by the plasma-maser process. Moreover, the density gradient

in°uences the growth rate of Bernstein mode wave. The theory agrees with the recent

experiments in astrophysical and space plasma and laboratory and the results have poten-

tial importance in the interpretation of anomalous radiation phenomena in astrophysical,

laboratory and space plasma.
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