
International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

46

International Journal of Advanced Multidisciplinary Research (IJAMR)
ISSN: 2393-8870
www.ijarm.com

Research Article
Secured privacy preserving opportunistic frame work for Mobile Healthcare
Emergency

G.Yogeshwaran* and C.Gunaseelan

Department of Computer Applications, Thirumalai Engineering College, Kilambi, Kancipuram, Tamilnadu, India
*Corresponding Author

Abstract

With the pervasiveness of smart phones and the advance of wireless body sensor networks (BSNs),
mobile Healthcare (m-Healthcare), which extends the operation of Healthcare provider into a
pervasive environment for better health monitoring, has attracted considerable interest recently.
However, the flourish of m-Healthcare still faces many challenges including information security and
privacy preservation. In this paper, we propose a secure and privacy-preserving opportunistic
computing framework, called SPOC, for m-Healthcare emergency. With SPOC, smart phone
resources including computing power and energy can be opportunistically gathered to process the
computing intensive personal health information (PHI) during m-Healthcare emergency with minimal
privacy disclosure. In specific, to leverage the PHI privacy disclosure and the high reliability of PHI
process and transmission in m-Healthcare emergency, we introduce an efficient user-centric privacy
access control in SPOC framework, which is based on an attribute-based access control and a new
privacy-preserving scalar product computation (PPSPC) technique, and allows a medical user to
decide who can participate in the opportunistic computing to assist in processing his overwhelming
PHI data. Detailed security analysis shows that the proposed SPOC framework can efficiently achieve
user-centric privacy access control in m-Healthcare emergency. In addition, performance evaluations
via extensive simulations demonstrate the SPOC’s effectiveness in term of providing high reliable PHI
process and transmission while minimizing the privacy disclosure during m-Healthcare emergency

Introduction

In our aging society, mobile Healthcare (m-Healthcare)
system has been envisioned as an important application of
pervasive computing to improve health care quality and save
lives, where miniaturized wearable and implantable body
sensor nodes and Smartphone’s are utilized to provide remote
healthcare monitoring to people who have chronic medical
conditions such as diabetes and heart disease. Specifically, in
an m-Healthcare system, medical users are no longer needed
to be monitored within home or hospital environments.
Instead, after being equipped with smart phone and wireless
body sensor network (BSN) formed by body sensor nodes,
medical users can walk outside and receive the high-quality
healthcare monitoring from medical professionals anytime
and anywhere. For example, as shown in Fig. 1, each mobile
medical user’s personal health information (PHI) such as heart
beat, blood sugar level, blood pressure and temperature and
others, can be first collected by BSN, and then aggregated by

smart phone via Bluetooth. Finally, they are further
transmitted to the remote healthcare center via 3G networks.
Based on these collected PHI data, medical professionals at
healthcare center can continuously monitor medical users’
health conditions and as well quickly react to users’ life-
threatening situations and save their lives by dispatching
ambulance and medical personnel to an emergency location in
a timely fashion.

Although m-Healthcare system can benefit medical user by
providing high quality pervasive healthcare monitoring, the
flourish of m-Healthcare system still hinges upon how we
fully understand and manage the challenges facing in m-
Healthcare system, especially during a medical emergency. To
clearly illustrate the challenges in m Healthcare emergency,
we consider the following scenario. In general, a medical
user’s PHI should be reported to the healthcare center every 5

Keywords

mobile Healthcare,
SPOC,
PPSPC,
PHI data,
m-Healthcare emergency.

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

47

minutes for normal remote monitoring. However, when he
has an emergency medical condition, for example, heart
attack, his BSN becomes busy reading a variety of medical
measures, such as heart rate, blood pressure, and as a result,
a large amount of PHI data will be generated in a very short
period of time, and they further should be reported every 10
seconds for high intensive monitoring before ambulance and
medical personnel’s arrival. However, since smart phone is
not only used for healthcare monitoring, but also for other
applications, i.e., phoning with friends, the smart phone’s
energy could be insufficient when an emergency takes
place. Although this kind of unexpected event may happen
with very low probability, i.e., 0.005, for a medical
emergency, when we take into 10, 000 emergency cases into
consideration, the average event number will reach 50,
which is not negligible and explicitly indicates the
reliability of m-Healthcare system is still challenging in
emergency.

Recently, opportunistic computing, as a new pervasive
computing paradigm, has received much attention.
Essentially, opportunistic computing is characterized by
exploiting all available computing resources in an
opportunistic environment to provide a platform for the
distributed execution of a computing-intensive task. For
example once the execution of a task exceeds the energy
and computing power available on a single node, other
opportunistically contacted nodes can contribute to the
execution of the original task by running a subset of task, so
that the original task can be reliably performed. Obviously,
opportunistic computing paradigm can be applied in m-
Healthcare emergency to resolve the challenging reliability
issue in PHI process. However, PHI are personal
information and very sensitive to medical users, once the
raw PHI data are processed in opportunistic computing, the
privacy of PHI would be disclosed. Therefore, how to
balance the high reliability of PHI process while minimizing
the PHI privacy disclosure during the opportunistic
computing becomes a challenging issue in m-Healthcare
emergency. In this paper, we propose a new secure and
privacy preserving opportunistic computing framework,
called SPOC, to address this challenge. With the proposed
SPOC framework, each medical user in emergency can
achieve the user-centric privacy access control to allow only
those qualified helpers to participate in the opportunistic
computing to balance the high-reliability of PHI process and
minimizing PHI privacy disclosure in m-Healthcare
emergency. Specifically, the main contributions of this
paper are threefold.

First, we propose SPOC, a secure and privacy-preserving
opportunistic computing framework for m-Healthcare
emergency. With SPOC, the resources available on other
opportunistically contacted medical users’ smart phones can
be gathered together to deal with the computing intensive
PHI process in emergency situation. Since the PHI will be
disclosed during the process in opportunistic computing, to

minimize the PHI privacy disclosure, SPOC introduces a
user-centric two-phase privacy access control to only allow
those medical users who have similar symptoms to
participate in opportunistic computing.

Second, to achieve user-centric privacy access control in
opportunistic computing, we present an efficient attribute
based access control and a novel non homomorphism
encryption based privacy-preserving scalar product
computation (PPSPC) protocol, where the attributed-based
access control can help a medical user in emergency to
identify other medical users, and PPSPC protocol can
further control only those medical users who have similar
symptoms to participate in the opportunistic computing
while without directly revealing users’ symptoms. Note that,
although PPSPC protocols have been well studied in
privacy-preserving data mining, yet most of them are
relying on time-consuming homo orphic encryption
technique. To the best of our knowledge, our novel non-
homo orphic encryption based PPSPC protocol is the most
efficient one in terms of computational and communication
overheads.

Third, to validate the effectiveness of the proposed SPOC
framework in m Healthcare emergency, we also develop a
custom simulator built in Java. Extensive simulation results
show that the proposed SPOC framework can help medical
users to balance the high-reliability of PHI process and
minimizing the PHI privacy disclosure in m- Healthcare
emergency.

ORGANIZATION PROFILE

At Innovetech Pro Solutions, We go beyond providing
software solutions. We work with our client’s technologies
and business changes that shape their competitive
advantages.

Founded in 2000, Innovetech Pro Solutions (P) Ltd. is a
software and service provider that helps organizations
deploy, manage, and support their business-critical software
more effectively. Utilizing a combination of proprietary
software, services and specialized expertise, Innovetech Pro
Solutions (P) Ltd. helps mid-to-large enterprises, software
companies and IT service providers improve consistency,
speed, and transparency with service delivery at lower costs.
Innovetech Pro Solutions (P) Ltd. helps companies avoid
many of the delays, costs and risks associated with the
distribution and support of software on desktops, servers
and remote devices. Our automated solutions include rapid,
touch-free deployments, ongoing software upgrades, fixes
and security patches, technology asset inventory and
tracking, software license optimization, application self-
healing and policy management. At Innovetech Pro
Solutions, we go beyond providing software solutions. We
work with our clients’ technologies and business processes
that shape their competitive advantages.

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

48

ABOUT THE PEOPLE

As a team we have the prowess to have a clear vision and
realize it too. As a statistical evaluation, the team has more
than 40,000 hours of expertise in providing real-time
solutions in the fields of Embedded Systems, Control
systems, Micro-Controllers, c Based Interfacing,
Programmable Logic Controller, VLSI Design And
Implementation, Networking With C ++, java, client Server
Technologies in .NET, Java,(J2EE\J2ME\J2SE\EJB),VB &
VC++, Oracle and operating system concepts with LINUX.

OUR VISION

“Dreaming a vision is possible and realizing it is our goal”.

OUR MISSION

We have achieved this by creating and perfecting processes
that are in par with the global standards and we deliver high
quality, high value services, reliable and cost effective IT
products to clients around the world.
CLIENTS
 Aray InfoTech
 Inquirre consultancy (U.S.A)
 K square consultancy pvt Ltd (U.S.A)
 Opal solutions
 Texlab Solutions
 Vertex Business Machines
 JM InfoTech

SYSTEM ANALYSIS

EXISTING SYSTEM
In Existing System, According to the sensex over the age of
65 is expected to hit 70 million by 2030, having doubled
since 2000. Health care expenditures projected to rise to
15.9% by 2013. The cost of health care for the nation’s
aging population has become a national concern are
important for understanding how the opportunistic
computing paradigm work when resources available on
different nodes can be opportunistically gathered together to
provide richer functionality, they have not considered the
potential security and privacy issues existing in the
opportunistic computing paradigm.
Disadvantages

Less privacy and less potential security.
Not an effective health care monitoring.

Proposed System

In our proposed SPOC framework aims at the security and
privacy issues, and develops a user-centric privacy access
control of opportunistic computing in m-Healthcare
emergency.

Advantages

1. Shift from a clinic-oriented, centralized healthcare
system to a patient-oriented, distributed healthcare system.
2. Reduce healthcare expenses through more efficient
use of clinical resources and earlier detection of medical
conditions.
3. Performance, Reliability, Scalability, Quality of
Service, Privacy, Security.
4. More prone to failures, caused by power
exhaustion, software and hardware faults, natural disasters,
malicious attacks, and human errors etc.
5.
DEVELOPMENT ENVIRONMENT

HARDWARE REQUIREMENTS:

Processor : Intel Dual Core.
Hard Disk : 60 GB.
Floppy Drive : 1.44 Mb.
Monitor : LCD Colour.
Mouse : Optical Mouse.
RAM : 1 GB.

SOFTWARE REQUIREMENTS:

Operating system : Windows XP.
Coding Language : C#.Net
Database : SQL Server 2005

SOFTWARE ENVIRONMENT
FEATURES OF .NET

Microsoft .NET is a set of Microsoft software technologies
for rapidly building and integrating XML Web services,
Microsoft Windows-based applications, and Web solutions.
The .NET Framework is a language-neutral platform for
writing programs that can easily and securely interoperate.
There’s no language barrier with .NET: there are numerous
languages available to the developer including Managed
C++, C#, Visual Basic and Java Script. The .NET
framework provides the foundation for components to
interact seamlessly, whether locally or remotely on different
platforms. It standardizes common data types and
communications protocols so that components created in
different languages can easily interoperate.

“.NET” is also the collective name given to various
software components built upon the .NET platform. These
will be both products (Visual Studio.NET and
Windows.NET Server, for instance) and services (like
Passport, .NET My Services, and so on).

THE .NET FRAMEWORK

The .NET Framework has two main parts:
1. The Common Language Runtime (CLR).

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

49

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of .NET. It
provides the environment within which programs run. The
most important features are

 Conversion from a low-level assembler-style
language, called Intermediate Language (IL), into code
native to the platform being executed on.
 Memory management, notably including garbage
collection.
 Checking and enforcing security restrictions on the
running code.
 Loading and executing programs, with version
control and other such features.
 The following features of the .NET framework are
also worth description:

Managed Code

The code that targets .NET, and which contains certain extra
Information - “metadata” - to describe itself. Whilst both
managed and unmanaged code can run in the runtime, only
managed code contains the information that allows the CLR
to guarantee, for instance, safe execution and
interoperability.

Managed Data

With Managed Code comes Managed Data. CLR provides
memory allocation and Deal location facilities, and garbage
collection. Some .NET languages use Managed Data by
default, such as C#, Visual Basic.NET and JScript.NET,
whereas others, namely C++, do not. Targeting CLR can,
depending on the language you’re using, impose certain
constraints on the features available. As with managed and
unmanaged code, one can have both managed and
unmanaged data in .NET applications - data that doesn’t get
garbage collected but instead is looked after by unmanaged
code.

Common Type System

The CLR uses something called the Common Type System
(CTS) to strictly enforce type-safety. This ensures that all
classes are compatible with each other, by describing types
in a common way. CTS define how types work within the
runtime, which enables types in one language to
interoperate with types in another language, including cross-
language exception handling. As well as ensuring that types
are only used in appropriate ways, the runtime also ensures
that code doesn’t attempt to access memory that hasn’t been
allocated to it.

Common Language Specification

The CLR provides built-in support for language
interoperability. To ensure that you can develop managed
code that can be fully used by developers using any
programming language, a set of language features and rules
for using them called the Common Language Specification
(CLS) has been defined. Components that follow these rules
and expose only CLS features are considered CLS-
compliant.

THE CLASS LIBRARY

.NET provides a single-rooted hierarchy of classes,
containing over 7000 types. The root of the namespace is
called System; this contains basic types like Byte, Double,
Boolean, and String, as well as Object. All objects derive
from System. Object. As well as objects, there are value
types. Value types can be allocated on the stack, which can
provide useful flexibility. There are also efficient means of
converting value types to object types if and when
necessary.

The set of classes is pretty comprehensive, providing
collections, file, screen, and network I/O, threading, and so
on, as well as XML and database connectivity.

The class library is subdivided into a number of sets (or
namespaces), each providing distinct areas of functionality,
with dependencies between the namespaces kept to a
minimum.

LANGUAGES SUPPORTED BY .NET

The multi-language capability of the .NET Framework and
Visual Studio .NET enables developers to use their existing
programming skills to build all types of applications and
XML Web services. The .NET framework supports new
versions of Microsoft’s old favorites Visual Basic and C++
(as VB.NET and Managed C++), but there are also a
number of new additions to the family.

Visual Basic .NET has been updated to include many new
and improved language features that make it a powerful
object-oriented programming language. These features
include inheritance, interfaces, and overloading, among
others. Visual Basic also now supports structured exception
handling, custom attributes and also supports multi-
threading.
Visual Basic .NET is also CLS compliant, which means that
any CLS-compliant language can use the classes, objects,
and components you create in Visual Basic .NET.

Managed Extensions for C++ and attributed programming
are just some of the enhancements made to the C++
language. Managed Extensions simplify the task of
migrating existing C++ applications to the new .NET
Framework.

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

50

C# is Microsoft’s new language. It’s a C-style language that
is essentially “C++ for Rapid Application Development”.
Unlike other languages, its specification is just the grammar
of the language. It has no standard library of its own, and
instead has been designed with the intention of using the
.NET libraries as its own.

Microsoft Visual J# .NET provides the easiest transition for
Java-language developers into the world of XML Web
Services and dramatically improves the interoperability of
Java-language programs with existing software written in a
variety of other programming languages.

Active State has created Visual Perl and Visual Python,
which enable .NET-aware applications to be built in either
Perl or Python. Both products can be integrated into the
Visual Studio .NET environment. Visual Perl includes
support for Active State’s Perl Dev Kit.

Other languages for which .NET compilers are available
include
 FORTRAN
 COBOL
 Eiffel

Fig1 .Net Framework

ASP.NET
XML WEB

SERVICES

Windows
Forms

Base Class Libraries

Common Language Runtime

Operating System

C#.NET is also compliant with CLS (Common Language
Specification) and supports structured exception handling.
CLS is set of rules and constructs that are supported by the
CLR (Common Language Runtime). CLR is the runtime
environment provided by the .NET Framework; it manages
the execution of the code and also makes the development
process easier by providing services.
C#.NET is a CLS-compliant language. Any objects, classes,
or components that created in C#.NET can be used in any
other CLS-compliant language. In addition, we can use
objects, classes, and components created in other CLS-
compliant languages in C#.NET .The use of CLS ensures
complete interoperability among applications, regardless of
the languages used to create the application.

CONSTRUCTORS AND DESTRUCTORS

Constructors are used to initialize objects, whereas
destructors are used to destroy them. In other words,

destructors are used to release the resources allocated to the
object. In C#.NET the sub finalize procedure is available.
The sub finalize procedure is used to complete the tasks that
must be performed when an object is destroyed. The sub
finalize procedure is called automatically when an object is
destroyed. In addition, the sub finalize procedure can be
called only from the class it belongs to or from derived
classes.

GARBAGE COLLECTION

Garbage Collection is another new feature in C#.NET. The
.NET Framework monitors allocated resources, such as
objects and variables. In addition, the .NET Framework
automatically releases memory for reuse by destroying
objects that are no longer in use.

In C#.NET, the garbage collector checks for the objects that
are not currently in use by applications. When the garbage
collector comes across an object that is marked for garbage
collection, it releases the memory occupied by the object.

OVERLOADING
Overloading is another feature in C#. Overloading enables
us to define multiple procedures with the same name, where
each procedure has a different set of arguments. Besides
using overloading for procedures, we can use it for
constructors and properties in a class.

OBJECTIVES OF. NET FRAMEWORK

1. To provide a consistent object-oriented programming
environment whether object codes is stored and executed
locally on Internet-distributed, or executed remotely.
2. To provide a code-execution environment to minimizes
software deployment and guarantees safe execution of code.
3. Eliminates the performance problems.

FEATURES OF SQL SERVER

The OLAP Services feature available in SQL Server version
7.0 is now called SQL Server 2000 Analysis Services. The
term OLAP Services has been replaced with the term
Analysis Services. Analysis Services also includes a new
data mining component. The Repository component
available in SQL Server version 7.0 is now called Microsoft
SQL Server 2000 Meta Data Services. References to the
component now use the term Meta Data Services. The term
repository is used only in reference to the repository engine
within Meta Data Services
SQL-SERVER database consist of six type of objects,
They are,
1. TABLE
2. QUERY
3. FORM
4. REPORT
5. MACRO

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

51

TABLE:

A database is a collection of data about a specific topic.

VIEWS OF TABLE:

We can work with a table in two types,
1. Design View
2. Datasheet View

Design View

To build or modify the structure of a table we work in the
table design view. We can specify what kind of data will be
hold.

Datasheet View
To add, edit or analyses the data itself we work in tables

datasheet view mode.

QUERY:
A query is a question that has to be asked the data. Access
gathers data that answers the question from one or more
table. The data that make up the answer is either dynaset (if
you edit it) or a snapshot (it cannot be edited).Each time we
run query, we get latest information in the dynaset. Access
either displays the dynaset or snapshot for us to view or
perform an action on it, such as deleting or updating.

AJAX:
ASP.NET Ajax marks Microsoft's foray into the ever-
growing Ajax framework market. Simply put, this new
environment for building Web applications puts Ajax at the
front and center of the .NET Framework.

PROJECT DESIGN STAGES

LIST OF MODULES
1. Health monitoring in M-Healthcare
2. Body Sensor Network
3. Security Analysis
4. Performance Evolution
5. Report Generation

MODULES DESCRIPTION

HEALTH MONITORING IN M-HEALTHCARE

In this module, each mobile medical user’s personal health
information (PHI) such as heart beat, blood sugar level,
blood pressure and temperature and others, can be first
collected by BSN, and then aggregated by smart phone via
Bluetooth. Finally, they are further transmitted to the remote
healthcare center via 3G networks. Based on these collected
PHI data, medical professionals at healthcare center can
continuously monitor medical users’ health conditions and
as well quickly react to users’ life-threatening situations and

save their lives by dispatching ambulance and medical
personnel to an emergency location in a timely fashion.

BODY SENSOR NETWORK

In this module, Body area network (BAN), wireless body
area network (WBAN) or body sensor network (BSN) are
terms used to describe the application of wearable
computing devices. This will enable wireless
communication between several miniaturized body sensor
units (BSU) and a single body central unit (BCU) worn at
the human body.
– Deploy wearable sensors on the bodies of
patients in a residential setting
– Continuously monitor physiological
signals (such as ECG, blood oxygen levels) and other health
related information (such as physical activity)

SECURITY ANALYSIS

In this Module to develop a secure and privacy-preserving
opportunistic computing framework to provide high
reliability of PHI process and transmission while
minimizing PHI privacy disclosure in m-Healthcare
emergency. Specifically, we

 apply opportunistic computing in m-Healthcare
emergency to achieve high-reliability of PHI process and
transmission; and
 develop user-centric privacy access control to
minimize the PHI privacy disclosure.

PERFORMANCE EVOLUTION

In this module, the performance metrics used in the
evaluation are :

1) The average number of qualified helpers (NQH), which
indicates how many qualified helpers can participate in the
opportunistic computing within a given time period, and

2) The average resource consumption ratio (RCR), which is
defined as the fraction of the resources consumed by the
medical user in emergency to the total resources consumed
in opportunistic computing for PHI process within a given
time period.

REPORT GENERATION

In this module, Health care center generate crystal report
from the database collection for future reference.

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

52

CLASS DIAGRAM

user_mobile_device
user id
adhoc network
user report
3G network

receive()
encrypt()
send()

router
user id
3G network
user report

receive()
send()

admin_officer
user id
user report
user name
doctor name

send report()
cancel()

specialized_doctor
user id
user name
view report
view last treatment status
patient neighbour

decrypt report()
generate report()
solution()
inform to relation()

emergency_occurence
first aid
oxygen
blood
van
other needs

provide()
cancel()

Login
user name
password

sign in()
cancel()

Home_Page

registration()
cancel()

registration
user id
name
user name
password
mobile no
gender
age

register()
cancel()

body_sensor_network
user id
blood pressure level
oxygen level
sugar level
ecg level
adhoc network

sensing()
send()

USECASE DIAGRAM

sensing

medical user

send details

registration

receive detail

identify doctor

health care center

send report to specialised doctor

view report

view sensing data

provide treatment

doctor

inform to relation

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

53

SEQUENCE DIAGRAM
useruser home pagehome page registrationregistration body sensor

network
body sensor

network
user mobileuser mobile routerrouter admin officeradmin officer specialized

doctor
specialized

doctor
monitor systemmonitor system

user name

password

registration

provide bsn

sensing body

send report

encrypt data

send report

identify doctor and

send report receive report

decrypt data

generate report

provide treatment

inform to user relative

logout

COLLOBORATION DIAGRAM

user home
page

body sensor
network

user
mobile

router

admin
officer

specialized
doctor

monitor
system

registrati
on

1: user name
2: password

3: registration

4: provide bsn

5: sensing body
6: send report

7: encrypt data

8: send report

9: identify doctor and send report

10: receive report
11: decrypt data

12: generate report

13: provide treatment
14: inform to user relative

15: logout

IMPLEMENTATION STEPS OF THE PROJECT
IMPLEMENTATION STEPS

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

54

SAMPLE CODING
SERVER

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Data.SqlClient;
using System.Net.Sockets;
using System.Net;
using System.IO;

namespace server
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void button1_Click(object sender, EventArgs e)
{

FolderBrowserDialog f = new FolderBrowserDialog();
f.ShowDialog();
if (f.SelectedPath != "")
{

DestCode.receivedPath = f.SelectedPath;
label5.Text = f.SelectedPath;

}
else
{

MessageBox.Show("Please Select a File Receiving Path.\r\n Else You Can not Receive the File");
}

}
DestCode d = new DestCode();
private void Form1_Load(object sender, EventArgs e)
{

backgroundWorker1.RunWorkerAsync();
}

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{

d.StartServer();
}

private void timer1_Tick(object sender, EventArgs e)
{

if (DestCode.receivedmsg == "Received")
{

DestCode.receivedmsg = "";
listBox1.Items.Add(DestCode.curMsg);

}
else if (DestCode.receivedmsg == "Save")

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

55

{
DestCode.receivedmsg = "";
lblRes.Text = "File Saved";

}
else
{

lblRes.Text = "";
}

}
}
class DestCode
{

IPEndPoint ipEnd;
Socket sock;
public DestCode()
{

IPHostEntry ipEntry = Dns.GetHostEntry(Environment.MachineName);
IPAddress IpAddr = ipEntry.AddressList[0];
ipEnd = new IPEndPoint(IpAddr, 5003);
sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);
sock.Bind(ipEnd);

}
public static string receivedmsg;
public static string receivedPath;
public static string curMsg = "";
byte[] write;
byte[] data1;
byte[] data2;
byte[] data3;
byte[] data4;
byte[] data5;
int i = 0;
int len = 0;
public void StartServer()
{

try
{

//curMsg = "Starting...";
sock.Listen(100);

// curMsg = "Running and waiting to receive file.";
Socket clientSock = sock.Accept();

byte[] clientData = new byte[1024 * 5000];

int receivedBytesLen = clientSock.Receive(clientData);
curMsg = Convert.ToString(receivedBytesLen) + " Bits Received ";
receivedmsg = "Received";
if (i == 0)
{

data1 = new byte[receivedBytesLen];
Array.Copy(clientData, data1, receivedBytesLen);
len = receivedBytesLen;
i++;
//receivedmsg = "";

}

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

56

else if (i == 1)
{

len += receivedBytesLen;
data2 = new byte[receivedBytesLen];
Array.Copy(clientData, data2, receivedBytesLen);
i++;

}
else if (i == 2)
{

len += receivedBytesLen;
data3 = new byte[receivedBytesLen];
Array.Copy(clientData, data3, receivedBytesLen);
i++;

}
else if (i == 3)
{

len += receivedBytesLen;
data4 = new byte[receivedBytesLen];
Array.Copy(clientData, data4, receivedBytesLen);
i++;

Application.DoEvents();
write = new byte[len];

}

if (i == 4)
{

//byte[] write = new byte[data1.Length + data2.Length + data3.Length + data4.Length];
if (receivedPath == null)
{

MessageBox.Show(" Path was Not selected for Save the
File.","Warning",MessageBoxButtons.OK,MessageBoxIcon.Hand);

}
else
{

Array.Copy(data1, write, data1.Length);
Array.Copy(data2, 0, write, data1.Length + 1, data2.Length);
Array.Copy(data3, 0, write, data1.Length + data2.Length, data3.Length);
Array.Copy(data4, 0, write, data1.Length + data2.Length + data3.Length, data4.Length);

int fileNameLen = BitConverter.ToInt32(write, 0);
string fileName = Encoding.ASCII.GetString(write, 4, fileNameLen);

BinaryWriter bWrite = new BinaryWriter(File.Open(receivedPath + "/" + fileName, FileMode.Append)); ;
bWrite.Write(write, 4 + fileNameLen, write.Length - 4 - fileNameLen);

//curMsg = "Saving file...";

bWrite.Close();
curMsg = "";

data1 = null;
data2 = null;

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

57

data3 = null;
data4 = null;

receivedmsg = "Save";
MessageBox.Show("File Receiving Completed.", "Success",
MessageBoxButtons.OK, MessageBoxIcon.Information);

}
}
clientSock.Close();

StartServer();

}
catch (Exception ex)
{

curMsg = "File Receving error.";
}

}

}
}

CLIENT
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.IO;

using System.Data.SqlClient;
using System.Net.Sockets;
using System.Net;

namespace Client
{

public partial class Form2 : Form
{

public Form2()
{

InitializeComponent();
}

string fileDes, fileini;
int len;
int port = 0;
byte[] clientData;
byte[] data1;
byte[] data2;
byte[] data3;
byte[] data4;
string filePath;

byte[] fileNameByte;
byte[] fileData;

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

58

byte[] fileNameLen;

private void Form2_Load(object sender, EventArgs e)

{
button2.Enabled = false ;
button3.Enabled = false;

}

private void button1_Click(object sender, EventArgs e)
{

data1 = null;
data2 = null;
data3 = null;
data4 = null;
textBox1.Text = "";
openFileDialog1.ShowDialog();
textBox1.Text = openFileDialog1.FileName;
fileDes = openFileDialog1.FileName;

if (fileDes == "openFileDialog1")
{

textBox1.Text = "";
MessageBox.Show("Please Select the file");

}
else
{

button2.Enabled = true;
len = fileDes.Length;
fileini = fileDes.Substring(fileDes.IndexOf("\\") + 1);

filePath = "";

fileDes = fileDes.Replace("\\", "/");
while (fileDes.IndexOf("/") > -1)
{

filePath += fileDes.Substring(0, fileDes.IndexOf("/") + 1);
fileDes = fileDes.Substring(fileDes.IndexOf("/") + 1);

}

fileNameByte = Encoding.ASCII.GetBytes(fileDes);

fileData = File.ReadAllBytes(filePath + fileDes);
clientData = new byte[4 + fileNameByte.Length + fileData.Length];
fileNameLen = BitConverter.GetBytes(fileNameByte.Length);

fileNameLen.CopyTo(clientData, 0);
fileNameByte.CopyTo(clientData, 4);
fileData.CopyTo(clientData, 4 + fileNameByte.Length);
int psize = clientData.Length / 1024;
lblfilesize.Text = psize.ToString() + " KB";

button1.Enabled = false;
}

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

59

}

private void button2_Click(object sender, EventArgs e)
{

//btnSend.Enabled = true;
button3.Enabled = true;
data2 = new byte[800];
data1 = new byte[500];
data3 = new byte[3000];
data4 = new byte[clientData.Length - 4300];
Array.Copy(clientData, data1, 500);
Array.Copy(clientData, 501, data2, 0, 800);
Array.Copy(clientData, 1300, data3, 0, 3000);
Array.Copy(clientData, 4300, data4, 0, clientData.Length - 4300);

listBox1.Items.Add("" + data1.Length + " Bits");
listBox1.Items.Add("" + data2.Length + " Bits");
listBox1.Items.Add("" + data3.Length + " Bits");
listBox1.Items.Add("" + data4.Length + " Bits");

button2.Enabled = false;
}

private void button3_Click(object sender, EventArgs e)
{

//timer1.Enabled = true;
button3.Enabled = false;
button1.Enabled = true;
if (data1.Length < 1000)
{

send(5001, txtIp1.Text , data1);
System.Threading.Thread.Sleep(3000);

}
else
{

send(5002,txtIp2.Text , data1);
}
if (data2.Length < 1000)
{

send(5001, txtIp1.Text, data2);
System.Threading.Thread.Sleep(3000);

}
else
{

send(5002, txtIp2.Text, data1);
}
if (data3.Length >= 1000)
{

send(5002, txtIp2.Text, data3);
System.Threading.Thread.Sleep(3000);

}
else
{

send(5001, txtIp1.Text, data3);
}

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

60

if (data4.Length >= 1000)
{

send(5002, txtIp2.Text, data4);
System.Threading.Thread.Sleep(3000);

}
else
{

send(5001, txtIp1.Text, data4);
}

}
public void send(int p, string ips, byte[] cdata)
{

timer1.Enabled = false;
port = p;
try
{

IPAddress[] ipAddress = Dns.GetHostAddresses(ips);
IPEndPoint ipEnd = new IPEndPoint(ipAddress[0], port);
Socket clientSock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

clientSock.Connect(ipEnd);
System.Threading.Thread.Sleep(1000);
clientSock.Send(cdata);
clientSock.Close();

}
catch (Exception ex)
{

if (ex.Message == "A connection attempt failed because the connected party did not properly respond after a period of
time, or established connection failed because connected host has failed to respond")

{

}
else
{

if (ex.Message == "No connection could be made because the target machine actively refused it")
{

}
else
{

}
}

}
timer1.Enabled = true;

}

private void button4_Click(object sender, EventArgs e)
{

this.Close();
}

private void lblfilesize_Click(object sender, EventArgs e)
{
}

}
}

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

61

TESTING STAGES OF THE PROJECT

The purpose of testing is to discover errors. Testing is the
process of trying to discover every conceivable fault or
weakness in a work product. It provides a way to check the
functionality of components, sub assemblies, assemblies
and/or a finished product.
It is the process of exercising software with the intent of
ensuring that the Software system meets its requirements
and user expectations and does not fail in an unacceptable
manner. There are various types of test. Each test type
addresses a specific testing requirement.

TYPES OF TESTS

Unit testing
Unit testing involves the design of test cases that validate
that the internal program logic is functioning properly, and
that program inputs produce valid outputs. All decision
branches and internal code flow should be validated. It is
the testing of individual software units of the application it
is done after the completion of an individual unit before
integration.
This is a structural testing, that relies on knowledge of its
construction and is invasive. Unit tests perform basic tests at
component level and test a specific business process,
application, and/or system configuration. Unit tests ensure
that each unique path of a business process performs
accurately to the documented specifications and contains
clearly defined inputs and expected results.
Integration Testing

Integration tests are designed to test integrated
software components to determine if they actually run as
one program. Testing is event driven and is more concerned
with the basic outcome of screens or fields. Integration tests
demonstrate that although the components were individually
satisfaction, as shown by successfully unit testing, the
combination of components is correct and consistent.
Integration testing is specifically aimed at exposing the
problems that arise from the combination of components.
Functional test

Functional tests provide systematic demonstrations that
functions tested are available as specified by the business
and technical requirements, system documentation, and user
manuals.
Functional testing is centered on the following items:
Valid Input : identified classes of valid input must
be accepted.
Invalid Input : identified classes of invalid input
must be rejected.
Functions : identified functions must be
exercised.
Output : identified classes of application
outputs must be exercised.
Systems/Procedures: interfacing systems or procedures must
be invoked.

Organization and preparation of functional tests is focused
on requirements, key functions, or special test cases. In
addition, systematic coverage pertaining to identify
Business process flows; data fields, predefined processes,
and successive processes must be considered for testing.
Before functional testing is complete, additional tests are
identified and the effective value of current tests is
determined.
System Test
System testing ensures that the entire integrated software

system meets requirements. It tests a configuration to ensure
known and predictable results. An example of system
testing is the configuration oriented system integration test.
System testing is based on process descriptions and flows,
emphasizing pre-driven process links and integration points.
White Box Testing
White Box Testing is a testing in which in which the
software tester has knowledge of the inner workings,
structure and language of the software, or at least its
purpose. It is purpose. It is used to test areas that cannot be
reached from a black box level.
Black Box Testing
Black Box Testing is testing the software without any
knowledge of the inner workings, structure or language of
the module being tested. Black box tests, as most other
kinds of tests, must be written from a definitive source
document, such as specification or requirements document,
such as specification or requirements document. It is a
testing in which the software under test is treated, as a black
box .you cannot “see” into it. The test provides inputs and
responds to outputs without considering how the software
works.
Unit Testing:

Unit testing is usually conducted as part of a
combined code and unit test phase of the software lifecycle,
although it is not uncommon for coding and unit testing to
be conducted as two distinct phases.

Test strategy and approach
Field testing will be performed manually and

functional tests will be written in detail.
Test objectives
 All field entries must work properly.
 Pages must be activated from the identified link.
 The entry screen, messages and responses must not
be delayed.

Features to be tested
 Verify that the entries are of the correct format
 No duplicate entries should be allowed
 All links should take the user to the correct page.
Integration Testing

Software integration testing is the incremental integration
testing of two or more integrated software

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

62

components on a single platform to produce failures caused
by interface defects.
The task of the integration test is to check that components
or software applications, e.g. components in a software
system or – one step up – software applications at the
company level – interact without error.

Test Results: All the test cases mentioned above passed
successfully. No defects encountered.
Acceptance Testing
User Acceptance Testing is a critical phase of any project
and requires significant participation by the end user. It also
ensures that the system meets the functional requirements.
Test Results: All the test cases mentioned above passed
successfully. No defects encountered.

INPUT/OUTPUT SCREENS

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

63

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

64

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

65

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

66

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

67

International Journal of Advanced Multidisciplinary Research 1(3): (2014): 46–68

68

EVALUATION REPORTS OF THE PROJECT

CONCLUSION

In this paper, we have proposed a secure and privacy
preserving opportunistic computing (SPOC) framework for
m-Healthcare emergency, which mainly exploits how to use
opportunistic computing to achieve high reliability of PHI
process and transmission in emergency while minimizing
the privacy disclosure during the opportunistic computing.
Detailed security analysis shows that the proposed SPOC
framework can achieve the efficient user-centric privacy
access control. In addition, through extensive performance
evaluation, we have also demonstrated the proposed SPOC
framework can balance the high-intensive PHI process and
transmission and minimizing the PHI privacy disclosure in
m-Healthcare emergency.

In our future work, we intend to carry on smart phone based
experiments to further verify the effectiveness of the
proposed SPOC framework. In addition, we will also
exploit the security issues of PPSPC with internal attackers,
where the internal attackers will not honestly follow the
protocol.

REFERENCES

[1] A. Toninelli, R. Montanari, and A. Corradi, “Enabling
Secure Service Discovery in Mobile Healthcare Enterprise
Networks,” IEEE Wireless Comm., vol. 16, no. 3, pp. 24-
32, June 2009.

[2] R. Lu, X. Lin, X. Liang, and X. Shen, “Secure
Handshake with Symptoms-Matching: The Essential to the
Success of M healthcare Social Network,” Proc. Fifth Int’l
Conf. Body Area
Networks (Body Nets ’10), 2010.

[3] Y. Ren, R.W.N. Pazzi, and A. Boukerche, “Monitoring
Patients via a Secure and Mobile Healthcare System,” IEEE
Wireless Comm., vol. 17, no. 1, pp. 59-65, Feb. 2010.

[4] R. Lu, X. Lin, X. Liang, and X. Shen, “A Secure
Handshake Scheme with Symptoms-Matching for m
Healthcare Social Network,” Mobile Networks and
Applications—special issue on wireless and personal
comm., vol. 16, no. 6, pp. 683-694, 2011.

[5] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable
and Secure Sharing of Personal Health Records in Cloud
Computing Using Attribute-Based Encryption,” IEEE
Trans. Parallel and Distributed System, to be published.

