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Abstract

In this brief, we propose a novel approach to implement multiplier less unity-gain single-
delay feedback fast Fourier transforms (FFTs). Previous methods achieve unity-gain FFTs
by using either complex multipliers or non unity-gain rotators with additional scaling
compensation. Conversely, this brief proposes unity-gain FFTs without compensation
circuits, even when using non-unity-gain rotators. This is achieved by a joint design of
rotators, so that the entire FFT is scaled by a power of two, which is then shifted to unity.
This reduces the amount of hardware resources of the FFT architecture. The proposed
approach can be Implemented using Verilog HDL and Simulated by Modelsim 6.4 c.
Finally its Synthesized by Xilinx tool and Implemented in FPGA Spartan 3 XC3S 200 TQ-
144.

Introduction

Digital signal processing (DSP) world, there is often a
need to convert signals between time and frequency
domains. For this reason, the fast Fourier transform
(FFT) has become one of the most important
algorithms in the field. In order to calculate the FFT
efficiently, various hardware architectures have been
proposed. When high performance is required,
feedback and feed forward ,  hardware FFT
architectures are attractive options, as they offer high
throughput capabilities. Single-delay feedback (SDF)
FFT architectures consist of a series of stages that
process one sample per clock cycle. Each stage
contains a butterfly and a rotator. The butterfly
calculates additions, and the rotator carries out
rotations in the complex plane by given rotation
angles, called twiddle factors. Compared with the
additions of the butterfly, rotations are more costly
operations. For this reason, different approaches to
implement rotators have been proposed in the past.

The most straightforward approach is to use a complex
multiplier, which consists of four real multipliers and
two adders. In addition, it requires a memory to store
the twiddle factors. Another option is to implement the
rotators as shift-and-add operations. Following this
idea, the CORDIC algorithm breaks down the rotation
angle into several successively smaller angles and
rotates each of them with a fixed shift-and-add
network. Another alternative is to use multiplier-based
shift-and-add rotators. By using techniques, such as
multiple constant multiplications, these rotators carry
out the rotation by reducing the complex multiplier to
shift-and-add operations. Among all these alternatives,
multiplier-based shift-and-add rotators ,  are the most
efficient option for small set point SDF FFT
architecture, using n = 6 stages.  Internal structure of
an SDF stage. of twiddle factors, whereas the
CORDIC-based rotators  are the best alternative for
large ones. However, CORDIC-based approaches and
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some multiplier-based shift-and-add rotators, scale the
output by a scaling factor R≠ 1. This scaling allows for
more accurate and hardware-efficient rotations. In
order to achieve unity gain, previous works have
compensated the scaling factor by adding a scaling
stage to the rotator.

However, this increases the usage of hardware
resources. In this brief, we present the novel multiplier
less unity-gain SDF FFTs. They are obtained by
designing the rotators in all FFT stages
simultaneously, so that the output of the FFT has unity
gain. Thus, the proposed approach neither requires the
use of costly unity-gain rotators, nor circuits to
compensate the scaling. This reduces the complexity
of the FFT rotators and guarantees unity gain for the
FFT.

This brief presents a novel  memory-based FFT. The
proposed design has several advantages. With respect
to the previous  approaches, it uses the minimum
memory of N samples and a few additional
multiplexers. Furthermore, the proposed approach has
been implemented using Spartan 3 slices on a field
programmable gate array (FPGA). The
implementation allows integrating the components of
the architecture. This reduces the hardware especially
the amount of distributed logic. This reduces the

complexity of the FFT rotators and guarantees unity
gain for the FFT. In this brief, we study different FFT
sizes and propose suitable solutions for each size. The
16 point DIT-FFT architecture is implemented as a
Memory based architecture. We done Sixteen point
DIT-FFT architecture consist of two points, four
points, and Eight Point and Sixteen point as Stages.
We are Design a FFT architecture based on
Decimation in Time.

Existing system

There exist numerous memory-based FFT
architectures in the literature. They mainly differ in the
size of the processing element (PE) (butterflies and
rotators). This brief presents an approach for
improving the accuracy of rotations implemented by
complex multipliers, based on scaling the complex
coefficients that define these rotations. A method for
obtaining the optimum coefficients that lead to the
lowest error is proposed. This brief analyzes two
different situations where the optimization method can
be applied: rotations that can be optimized
independently and sets of rotations that require the
same scaling. These cases appear in important signal
processing algorithms such as the discrete cosine
transform and the fast Fourier transform (FFT).

Fig1.Existing memory

Proposed System

We present the novel multiplier less unity-gain SDF
FFTs. They are obtained by designing the rotators in
all FFT stages simultaneously, so that the output of the
FFT has unity gain. Thus, the proposed approach

neither requires the use of costly unity-gain rotators,
nor circuits to compensate the scaling. This reduces
the complexity of the FFT rotators and guarantees
unity gain for the FFT. In this brief, we study different
FFT sizes and propos suitable solutions

for each size foreach size.



Int. J. Adv. Multidiscip. Res. (2018). 5(6): 64-68

66

Fig 2.Proposed memory based radix-4 FFT architecture.

Proposed memory based FFT

Basic Architecture

The radix-2 FFT algorithms are used for data vectors
of lengths N = 2K. They proceed by dividing the DFT
into two DFTs of length N/2 each, and iterating. There
are several types of radix- 2 FFT algorithms, the most
common being the decimation-in-time (DIT) and the
decimation-in-frequency (DIF). This terminology will
become clear in the next sections. In this section we
present several methods for computing the DFT
efficiently.

In view of the importance of the DFT in various
digital signal processing applications, such as linear
filtering, correlation analysis, and spectrum analysis,
its efficient computation is a topic that has received
considerable attention by many mathematicians,
engineers, and applied scientists.

From this point, we change the notation that X(k),
instead of y(k) in previous sections, represents the
Fourier coefficients of x(n).

Basically, the computational problem for the DFT is to
compute the sequence {X(k)} of N complex-valued
numbers given another sequence of data {x(n)} of
length N, according to the formula

In general, the data sequence x(n) is also assumed to
be complex valued. Similarly, The IDFT becomes

Since DFT and IDFT involve basically the same type
of computations, our discussion of efficient
computational algorithms for the DFT applies as well
to the efficient computation of the IDFT.

We observe that for each value of k, direct
computation of X(k) involves N complex
multiplications (4N real multiplications) and N-1
complex additions (4N-2 real additions).
Consequently, to compute all N values of the DFT
requires N 2 complex multiplications and N 2-
N complex additions.

Direct computation of the DFT is basically inefficient
primarily because it does not exploit the symmetry and
periodicity properties of the phase factor WN. In
particular, these two properties are :

The computationally efficient algorithms described in
this sectio, known collectively as fast Fourier
transform (FFT) algorithms, exploit these two basic
properties of the phase factor.
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Fig 7.Three stages in the computation of an N = 8-point DFT

Fig 8.Eight-point decimation-in-time FFT algorithm

Now, let us split (decimate) X(k) into the even- and odd-numbered samples.

RTL SCHEMATIC:

RTL
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Device utilization memory:

Conclusion

This brief shows how to design multiplier less unity-
gain 8 Point SDF FFT architectures. The proposed
architectures are not only multipierless and achieve
Less area and Delay, but also require the smallest
number of adders among current SDF FFTs. The
proposed architectures achieve good figures of merit
in terms of clock frequency, area. The 16 Point FFT
implement by Verilog HDL and Simulated in
Modelsim 6.4 c and Synthesized in Xilinx 9.1 tool.
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