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Abstract

A different approach in which the operation of the scheme is regarded as forming a
Markovian chain is set out. The run length properties of control charts and cusum charts,
under conditions of slippage in mean level by step change to a new sustained level are well
documented. Such control procedures are often used where a genuine out of control signal
may result from gradual, rather than step changes. The paper presents the results of
evaluation of run length under linear trend with weibull distribution

1. INTRODUCTION

CUSUM schemes were introduced in 1954 by
‘E.S.Page’ [1]. These charts may be used in several
situations where a production process is expected to
change at an unknown time from an in control state to an
out of control state. As soon as one has evidence that the
out of control state has observed one would wishes to
stop the production process to take remedial measures.
CUSUM schemes have proven to be optimal stopping
rules in the sense that to minimise expected run length
under the out of control state given that the stopping
rules has a fixed expected run length under the in-
control state .

CUSUM control charts have found an interesting variety
of applications since their introduction. Several
researchers namely Johnson[3], U.Rendtel [2], James
M.Lucas and Ronald  B. Crosier [4], Brook and Evans
[5],  Sullivan,J.H. and Woodall,W.H.[8], Hawkins, D.M.
[9], Hinkley, D.V. [10],  Sen, Ashish, and Srivastava,

Muni S [11], Khan R.A., [12]  have attempted
performance of CUSUM charts under various
conditions. In most of the research problems the
CUSUM chart performance is mainly assessed based on
the ARL or its distribution. In other words the
effectiveness of monitoring procedures like Shewart
charts with Action limit only, control charts with
Warning lines and CUSUM procedures can be
demonstrated when there is a slippage in mean level
from a target value. This can be done with the help of
ARL or other features of run length distributions. The
ARL is usually measured on the assumption of step
change i.e. abrupt change from the process average. The
main purpose of this chapter is to assess the performance
of control charts and CUSUM charts under linear trend
with non normal distributions namely, Exponential
distribution, Gamma distribution and Weibull
distribution. These distributions are considered because
of their heavy applications in the real world. These
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distributions importance is discussed as and when the
CUSUM schemes and other control charts
performance is assessed. In the subsequent section we
discuss Shewart chart with action line, control chart
with warning line and CUSUM procedures.

2. SHEWART CONTROL CHART WITH ACTION
LINES

In the construction of control charts we are using two
sets of limits such as action limits or outer limits and
warning limits or inner limits. When a in action lines
point plots outside of this limit, a search for an
assignable causes is made and corrective action is taken
if necessary. Shewart control chart with only action
lines, it is denoted by ‘Scheme A’ and specified
distributional assumptions, the evaluation of run length
properties follows Geometric distribution with parameter

that is

ARL = (1)

where is the Probability of action limit for a specified
process mean and distribution form

3. SHEWART CONTROL CHART WITH
WARNING LINES

In a Shewart control chart with action and warning lines
we take decisions with monitoring procedures depend on
preceding observations as well as the most recent value.
It is denoted by ‘Scheme W’. If one or more points fall
between the warning line and the central line or very
close to the warning line, we should be suspicious that
the process may not be operating properly. One possible
action to take when this occurs is to increase the
sampling frequency. The use of warning limit can
increase the sensitivity of the control chart. These
decisions can be taken with the help of Markov chains
[Page, 1954]. The complete run length distribution is
obtained by using successive powers of the transition
matrix. In particular, the ARL is found to be

(2)

where is the probability of a violation of warning line
which includes more extreme action line violation .
The action line scheme having only two states one
Transient, one absorbing.

4. TRANSITION MATRICES FOR CONTROL
CHART AND CUSUMSWITH WEIBULL
DISTRIBUTION
4.1. THE IMPORTANCE OF WEIBULL
DISTRIBUTION

Parametric distributions are often used to model life time
and time-to-failure responses. The Weibull distribution,
a member of a special class of parametric distributions
known as location-scale distributions, has found wide
application in engineering and medical research. The
Weibull distribution is characterized by its shape and
scale parameters. By changing the shape parameter, the
Weibull distribution can be made to have many different
shapes, from highly skewed like an exponential
distribution to nearly bell-shaped like a normal
distribution. The hazard function, an important
characteristic of a life time distribution, indicates the
instantaneous failure rate of surviving units. The
Weibull is unique in that its hazard function can model
increasing, decreasing, or constant hazard rates. The
practical importance of the Weibull distribution stems
from its ability to model life time phenomena with many
different commonly occurring shapes and hazard rates.
This talk will first describe various important
mathematical quantities relevant to life time modeling,
including the probability density function, the hazard
function and percentiles. Relating life time responses to
covariates, like drug type and age in a medical study or
temperature in an industrial experiment, will then be
discussed. Finally, example applications of the Weibull
distribution in engineering and medical research will be
presented. Weibull distribution is often used to represent
observed values in ‘life testing’ types of situations. The
successive observations are represented by independent
random variables X1,X2-------Xnhaving the Weibull
probability density function

P (Xi/θ) = C
(xi > 0, θ >0, C > 0) (3)

P (xi ≤ X) = (X > 0) (4)

The mean of the distribution is

ξ = Γ ( + 1) (5)

Generally in life testing problems, it has been found that
a Weibull distribution [for which the cthpower of the
variable is Exponential distributed] often gives the
markedly more accurate representation. If C = 1, above
density function reduces to Exponential distribution.
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Certain results are obtained using Markovian approach
as discussed in the following situation.

Weibull distribution has been extensively used in life
testing, Reliability and Quality control problems.
Weibull [14] showed that the distribution is also useful
in describing the ‘Wear – out ‘or fatigue failures. Kao
[15] used it as a model for vacuum tube failures while
Lieblein and Zelen [16] used it as a model for ball
bearing failures. Mann [17]gives a variety of situations
in which the distribution is used for other types of
failures data. Some indication of the recent popularity of
the Weibull distribution is seen in split stone’sthesis.
The distribution is often suitable where the conditions of
‘Strictrandomness’ of the exponential distribution are
not satisfied.

Berrettoni [18] has described many applications of the
Weibull distribution, using graphical methods in most

cases. Sometimes the Exponential distribution will be
found to suffice, and the Weibull distribution will be
dispensed. However, the Weibull distribution may
provide just the extra flexibility needed to make a model
sufficiently accurate for use is an analysis. The Weibull
distribution is sometimes used as a tolerance distribution
in the analysis of quantal response data. The explicit
form of its cumulative distribution function makes it
especially suitable for this purpose.

4.2. TRANSITION MATRIX FOR CONTROL
CHART

The Transition matrices representation for control charts
are give below. In case of row labels refer to states at
sample (i – 1) and column heading to states at sample i.
The upper left column partition is the reduced transition
matrix after deleting row and column for the absorbing
states.

Table 1

A. Transition matrix for "Action only"   (Shewart)
chart

clear signal

clear 1-PA PA

signal 0 1

Table 2

W. Transition matrix for "Action and Warning"     control chart

clear Warning signal

clear 1-PA PW-PA PA

Warning 1-PW 0 PW

Signal 0 0 1

4.3.TRANSITION MATRIX FOR CUSUM CHART
WITH WEIBULL DISTRIBTUION

Brooks and Evans [5] show that CUSUM procedures
may be viewed as Markov chains. However for,
continuous distributions, it is necessary to consider the
discretization for the markov chain representation and

the various states then corresponds to values of the
CUSUM at any step. For an instance consider a scheme
with decision interval H and reference value K are
designed to detect upward shift from a target value. A
set of (m + 1) states can be interpreted as the CUSUM
values of

≤ 0, 0 to , to ,  etc--------------(m -1) to < H, ---------- ≥ H. (6)
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The last of these states that is violation of the decision
interval can be thought of as an absorbing barrier.

In the usual Markov chain notation with Transition
matrix P and reduced matrix are which is obtained from
the deletion of the row and column representing the
absorbing barrier. The well known result for obtaining
ARL from an initial zero CUSUM is the sum of the

elements in the first row of . While considering
the states the degree of discretization has some effect on
the accuracy of ARL determination. In the present study
20 states transition matrices were used. Thus for H = 5
and K = 0.5 with μ at the target value. The transition
matrix in general and for the particular study is shown in
tables 3 and 4 respectively.

Table 3

C.Transition matrix for CUSUM scheme H, K (m + 1 states)

0 - ------------- ≥H

≤0 P0,0 P0,1 P0,2 -------------- P0,m-1 P0,m

CUSUM
at

P1,0 P1,1 P1,2 -------------- P1,m-1 P1,m

(i - 1)th

sample
P2,0 P2,1 P2,2 --------------- P2,m-1 P2,m

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Pm-1,0 Pm-1,1 Pm-1,2 --------------- Pm-1,m-1 Pm-1,m

≥H 0 0 0 -------------- 0 1

The entries in the above matrix need some explanation.
In the first row, all entries corresponding moves from an
initial zero CUSUM, and in the first entry, it indicates
that a sample i, the CUSUM remains at or below zero.
This means the sample value should not exceed the
reference value k. Thus

P0, 0 = P (x≤ K) (7)

For a move from state zero to H/m, the ith sample must
have a value between K and

(K +H/m). So that the subtraction of reference value
gives a CUSUM contribution of H/m. After the
discretization,

P0, 1 = P(x = K + 2H/m) (8)

For details including discretization, see Brook and Evans
[5]

5.RUN LENGTH CALCULATION UNDER
LINEAR TREND WITH WEIBULL
DISTRIBUTION

The method explained for ARL calculations is
applicable only under the assumption that the
phenomenon or process average undergoes stable
distribution.
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However, in case of liner trend both the distribution
functions and transition matrix changes over the time.
These changes can be quantifiable for any specific rate
of slippage. Here we get a non-homogenous Markov
chain and an alternative method of obtaining ARL is
essential. This can be easily derived from the procedures
for generalising rum length distribution under stable
conditions.

The entry P0,min the transition matrix stands for the
probability of occurrence of a signal at the first sample
instant. That means stands for element in column
0, row m of . This givesprobability of signal atthe ith

sample. Successive difference between say -
gives the probability of signal at the ith sample. For an
increasing i, we get probability distribution of run
length.

For an illustration, consider W chart with action line at
3.09σe from a target value and warning limit at 1.96σe.
Let the process changes to a value 1.00σe from the target
value, then for Weibull variable

PA = 1- ϕ (3.09-1)
= 0.014158

PW = 1- ϕ (1.96 -1)
= 0.142943

The transition matrix in this case is given by

P =

The ARL is

= 34.660575

The probability of a signal at the first sample
is . Squaring P, we get

The element is . Obviously the
probability of a signal a sample 2 is 0.0305439.
Similarly is 0.0724408, gives 0.02773983is the
probability run length for three samples.

In the case of non homogenous transition matrix, it is
necessary to multiply original P by new transition matrix
obtained after allowing a step change in the mean level.

We denote the rate of change by ∆ and we use 1P, 2P etc,
for the first, second etc samples transition matrices are
deduced. In general the Cumulative probability of signal
at or before the ith sample is (0, m)th element of the
product.

i.e.1P 2P 3P-------iP

Individual terms of the run length probability
distribution are obtained by successive differences of
cumulative probabilities.

Reconsider W scheme with A = 3.09, W = 1.96, with 0
shift, we get

PA =0.0002004
PW =0.0204326

We get

1P =

At the second sample, the 0.5σe shift i.e.∆ = 0.5 gives

PA = 0.002427272
PW= 0.063858624

We get

2P =

Also

1P 2P =

From the above calculations we get the cumulative
probabilities of a signal at sample 2 is .
Subtracting the (0, m)th element of 1P gives 0.00366966.
The above computations are presented for the sake of
illustration allowing slippages at different levels similar
type of calculated and re-designated as

1P 2P 3P-------

For different slippages in mean level, say ∆ = 0.01, 0.02,
0.05, 0.1, 0.2 are computed and summarised below.
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TABLE 4
SIGNALING TABLE FOR ACTION AND WARNING CHARTS

SIGNAL
SHIFT PA PW 0.979567322 0.020232231 0.000200447 0.001120045

0 0.000200447 0.02 1P 0.979567322 0 0.020432678
0 0 1 0.97881452 0.020352128 0.000833352

1P *2P 0.959006947 0.020352128 0.020640925 0.009329056
0.01 0.979010759 0.020776651 0.00021259 0 0 1

0.00021259 0.021 2P 0.979010759 0 0.020989241
0 0 1 0.978235031 0.02088385 0.000881119

2P*3P 0.957906262 0.02088385 0.021209888 0.016852852
0.02 0.978443039 0.021331584 0.000225378 0 0 1

0.000225378 0.022 3P 0.978443039 0 0.021556961
0 0 1 0.976451649 0.022563225 0.000985127

3P*4P 0.955617693 0.022563225 0.021819083 0.025974939
0.05 0.976671768 0.023060335 0.000267896 0 0 1

0.000267896 0.023 4P 0.976671768 0 0.023328232
0 0 1 0.973225054 0.025549373 0.001225573

4P*5P 0.950776144 0.025549373 0.023674483 0.055767695
0.1 0.973485847 0.026159631 0.000354522 0 0 1

0.000354522 0.027 5P 0.973485847 0 0.026514153
0 0 1 0.965846876 0.032326596 0.001826529

5P*6P 0.940571718 0.032326596 0.027101687 0.077200649
0.2 0.966189411 0.033207053 0.000603536 0 0 1

0.000603536 0.034 6P 0.966189411 0 0.033810589
0 0 1 0.935576381 0.059354321 0.005069298

6P*7P 0.904489885 0.059354321 0.036155794 0.160353622
0.5 0.936141376 0.061431351 0.002427273 0 0 1

0.002427273 0.064 7P 0.936141376 0 0.063858624
0 0 1 0.85497677 0.120560962 0.024462269

7P*8P 0.802326595 0.120560962 0.077112444 0.220349962
1 0.857057081 0.128784994 0.014157925 0 0 1

0.014157925 0.143 8P 0.857057081 0 0.142942919
0 0 1
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In case of CUSUM scheme the transition matrix can be
obtained by making use of the formulae given in section
4.3.

6.RUN LENGTH PROPERTIES OF STANDARD
CONTROL CHARTS UNDER LINEAR TREND
WITH WEIBULL DISTRIBUTION

The following table give the average run length and
other properties of the run length distributions for

three basic control charts namely A scheme, W
scheme and CUSUM scheme. In these tables ∆ values
ranges from 0 to 1. Here we note that the shift will be
detected rapidly when the trend is greater than 1
standard error per sample in all charts methods.

TABLE 5

Run Length Properties of Control
Procedures Under Linear Trend

SCHEME

Δ A W C

0 ARL 450.6919 115.8865 31.21505

Δ*ARL 0 0 0

0.01 ARL 426.5498 112.6495 31.23813

Δ*ARL 4.265498 1.126495 0.312381

0.02 ARL 403.9013 109.5046 31.26118

Δ*ARL 8.078025 2.190092 0.625224

0.05 ARL 343.9257 100.5977 31.33018

Δ*ARL 17.19629 5.029887 1.566509

0.1 ARL 265.61 87.37712 31.44459

Δ*ARL 26.561 8.737712 3.144459

0.2 ARL 163.8623 66.117 31.67124

Δ*ARL 32.77245 13.2234 6.334247

0.5 ARL 48.74612 29.99123 32.33215

Δ*ARL 24.37306 14.99561 16.16607

1 ARL 11.84612 10.19315 33.35901

Δ*ARL 11.84612 10.19315 33.35901

The entries in the third and fourth column are obtained
by using equation (1) and (2) the first column ARL are
obtained by using from initial zero CUSUM is the sum
of the elements in the first row of of
respective slippage values. Here CUSUM scheme is

operated with H = 5, K = 0.5 under Weibull distribution.
The following table gives values of ARL and ∆*ARL
(displacement ARL) for these basic control charts and
the corresponding data for further two CUSUM scheme
with H =8, K=0.25 and H = 2.5, K =1.
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Table 6
Further Run Length Data for Control Schemes

CONTROL CHARTS CUSUM SCHEMES

A=3.09 A=3 A=3.09,W=1.96 A=3,W=2 H=8,K=0.25 H=5,K=0.5 H=2.5,K=1

Δ ARL Δ*ARL ARL Δ*ARL ARL Δ*ARL ARL Δ*ARL ARL Δ*ARL ARL Δ*ARL ARL Δ*ARL
0 450.69 0 317.348329 0 115.89 0 120.915063 0 238.529554 0 259.377919 0 249.531165 0

0.005 438.43 2.19213721 309.463949 1.54731975 114.26 0.57128184 119.018182 0.59509091 138.944839 0.6947242 131.226592 0.65613296 120.040585 0.60020293

0.01 426.55 4.26549844 301.808616 3.01808616 112.65 1.12649549 117.153482 1.17153482 77.5294484 0.77529448 81.2262769 0.81226277 81.0397792 0.81039779

0.015 415.05 6.22568234 294.37486 4.41562291 111.07 1.66598596 115.32042 1.7298063 38.5293442 0.57794016 71.2259651 1.06838948 70.0389783 1.05058468

0.02 403.9 8.07802542 287.155481 5.74310963 109.5 2.1900921 113.518461 2.27036922 32.5413772 0.65082754 61.2256564 1.22451313 60.0381827 1.20076365

0.025 393.1 9.82761463 280.143534 7.00358835 107.97 2.69914676 111.747078 2.79367695 28.52914 0.7132285 43.225351 1.08063377 50.0373923 1.25093481

0.03 382.64 11.4792994 273.332322 8.19996965 106.45 3.19347685 110.005754 3.30017261 22.5888834 0.6776665 37.2831033 1.1184931 42.9756484 1.28926945

0.04 362.68 14.5072327 260.286492 10.4114597 103.48 4.13924179 106.611248 4.26444994 20.6157341 0.82462936 31.3072075 1.2522883 39.9455852 1.59782341

0.05 343.93 17.1962874 247.969007 12.3984503 100.6 5.0298869 103.330963 5.16654814 38.6395701 1.9319785 28.3301769 1.41650884 35.9185224 1.79592612

0.06 326.3 19.5777961 236.334265 14.1800559 97.797 5.86782285 100.16104 6.00966242 18.6630612 1.11978367 24.3531177 1.46118706 31.8914949 1.91348969

0.08 294.12 23.5295738 214.946039 17.1956831 92.435 7.39477969 94.1374694 7.53099755 15.7090194 1.25672155 21.3989136 1.71191309 29.8375447 2.38700357

0.1 265.61 26.5609974 195.815587 19.5815587 87.377 8.737712 88.5120724 8.85120724 12.5421303 1.25421303 18.2381295 1.82381295 27.0269869 2.70269869

0.15 207.49 31.1229153 156.202959 23.4304439 75.961 11.3942094 76.0197414 11.4029612 10.8594122 1.62891183 16.558286 2.4837429 25.6498001 3.84747001

0.2 163.86 32.7724506 125.815829 25.1631659 66.117 13.2233999 65.4817406 13.0963481 8.95727525 1.79145505 14.6712354 2.93424708 22.5167009 4.50334018

0.25 130.77 32.692202 102.283431 25.5708577 57.637 14.4091652 56.5832257 14.1458064 7.04759448 1.76189862 11.7834233 2.94585583 19.3844143 4.84610358

0.3 105.41 31.6217093 83.8932307 25.1679692 50.337 15.1010534 49.0587712 14.7176314 6.1307555 1.83922665 10.8948286 3.26844857 15.2529206 4.57587618

0.4 70.442 28.176648 57.8725064 23.1490026 38.651 15.4603998 37.27591 14.910364 5.2771782 2.11087128 9.11519804 3.64607922 12.9922399 5.19689597

0.5 48.746 24.3730583 41.184584 20.592292 29.991 14.9956146 28.7498772 14.3749386 4.39971112 2.19985556 7.3321493 3.66607465 10.7345292 5.36726462

0.6 34.825 20.8947362 30.1565076 18.0939045 23.551 14.1303383 22.5161232 13.5096739 4.01477953 2.40886772 6.54548348 3.92729009 8.47967969 5.08780781

0.8 19.346 15.4770006 17.448592 13.9588736 15.094 12.0754473 14.4513443 11.5610754 3.6544577 2.92356616 5.96054392 4.76843514 7.97822347 6.38257878

1 11.846 11.8461154 11.0231764 11.0231764 10.193 10.1931469 9.81914279 9.81914279 3.57216861 3.57216861 5.35901488 5.35901488 5.48735686 5.48735686

1.25 7.1811 8.97637564 6.87731425 8.59664282 6.6843 8.35539024 6.50364139 8.12955174 3.39788804 4.24736004 4.83212906 6.04016132 4.88825044 6.11031304

1.5 4.8175 7.22628179 4.70767115 7.06150673 4.6891 7.03362348 4.60873849 6.91310774 2.89151919 4.33727879 4.27605113 6.4140767 4.30508747 6.45763121



Int. J. Adv. Multidiscip. Res. (2016). 3(4): 60-69

68

7. CONCLUSIONS

The various control schemes considered here are, in
effect, continuous hypothesis tests. These hypotheses
can be stated as

against the alternatives

“Single –sided” schemes

“Two-sided”
schemes

In real world, it is frequently unknown whether the
process averages μ will change suddenly or gradually.
Most of the ARL calculations are based on the one
standard deviation schemes under a trend alternative.

If trend is expected in the process average, this prior
knowledge will be incorporated in to the design of
control procedures while considering sampling intervals.

The data in table [5] and [6] in the case of Weibull
distribution suggest that there exists less difference in
performance between schemes A, W and C under the
trend than under step change conditions. Where as in
scheme C with Weibull distribution the lower ARL for
slippage of 0.2 to 0.1 standard errors is noted. From
table [6], it can be observed that the standard C
scheme with Weibull distribution gives somewhat
quicker response over the range 0.015 ≤∆≤ 0.6 as
compared with schemes of A and W schemes over the
range 0.03 ≤∆≤ 0.3. These results are broadly
compatible for those relating to step changes, in that,
for example with ARL ≅ 6, at ∆ = 0.3 for W and C
schemes, the process mean must have shifted above
two standard errors by the time the trend  is detected.
Similarly, for A and C shift is about 3 standard error
with ARL ≅ 4.9 at ∆= 0.6. For step changes greater
than 2.5 , it is observed that lower ARL for W when

compared with C scheme. The same situation is
prevailed in the case of slippage greater than 2.5 . In

table [6], the values of ∆ ARL gives for further
clarification on the point of selection A, W and C
alternatives.
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